Nakano Miki, Tateishi-Karimata Hisae, Tanaka Shigenori, Tama Florence, Miyashita Osamu, Nakano Shu-Ichi, Sugimoto Naoki
Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan Advanced Institute for Computational Sciences, RIKEN, 7-1-26, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
Nucleic Acids Res. 2015 Dec 2;43(21):10114-25. doi: 10.1093/nar/gkv1133. Epub 2015 Nov 3.
In conditions that mimic those of the living cell, where various biomolecules and other components are present, DNA strands can adopt many structures in addition to the canonical B-form duplex. Previous studies in the presence of cosolutes that induce molecular crowding showed that thermal stabilities of DNA structures are associated with the properties of the water molecules around the DNAs. To understand how cosolutes, such as ethylene glycol, affect the thermal stability of DNA structures, we investigated the thermodynamic properties of water molecules around a hairpin duplex and a G-quadruplex using grid inhomogeneous solvation theory (GIST) with or without cosolutes. Our analysis indicated that (i) cosolutes increased the free energy of water molecules around DNA by disrupting water-water interactions, (ii) ethylene glycol more effectively disrupted water-water interactions around Watson-Crick base pairs than those around G-quartets or non-paired bases, (iii) due to the negative electrostatic potential there was a thicker hydration shell around G-quartets than around Watson-Crick-paired bases. Our findings suggest that the thermal stability of the hydration shell around DNAs is one factor that affects the thermal stabilities of DNA structures under the crowding conditions.
在模拟活细胞的条件下,即存在各种生物分子和其他成分时,DNA链除了典型的B型双链体之外还能呈现多种结构。先前在存在诱导分子拥挤的共溶质的情况下进行的研究表明,DNA结构的热稳定性与DNA周围水分子的性质有关。为了了解诸如乙二醇之类的共溶质如何影响DNA结构的热稳定性,我们使用网格非均匀溶剂化理论(GIST),在有或没有共溶质的情况下,研究了发夹双链体和G-四链体周围水分子的热力学性质。我们的分析表明:(i)共溶质通过破坏水-水相互作用增加了DNA周围水分子的自由能;(ii)乙二醇对沃森-克里克碱基对周围水-水相互作用的破坏比对G-四重体或未配对碱基周围水-水相互作用的破坏更有效;(iii)由于负静电势,G-四重体周围的水化层比沃森-克里克配对碱基周围的水化层更厚。我们的研究结果表明,DNA周围水化层的热稳定性是影响拥挤条件下DNA结构热稳定性的一个因素。