Suppr超能文献

SAM/SAH类似物作为依赖SAM的甲基转移酶的多功能工具。

SAM/SAH Analogs as Versatile Tools for SAM-Dependent Methyltransferases.

作者信息

Zhang Jing, Zheng Yujun George

机构信息

Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia , Athens, Georgia 30602, United States.

出版信息

ACS Chem Biol. 2016 Mar 18;11(3):583-97. doi: 10.1021/acschembio.5b00812. Epub 2015 Nov 16.

Abstract

S-Adenosyl-L-methionine (SAM) is a sulfonium molecule with a structural hybrid of methionine and adenosine. As the second largest cofactor in the human body, its major function is to serve as methyl donor for SAM-dependent methyltransferases (MTases). The resultant transmethylation of biomolecules constitutes a significant biochemical mechanism in epigenetic regulation, cellular signaling, and metabolite degradation. Recently, numerous SAM analogs have been developed as synthetic cofactors to transfer the activated groups on MTase substrates for downstream ligation and identification. Meanwhile, new compounds built upon or derived from the SAM scaffold have been designed and tested as selective inhibitors for important MTase targets. Here, we summarized the recent development and application of SAM analogs as chemical biology tools for MTases.

摘要

S-腺苷-L-甲硫氨酸(SAM)是一种具有甲硫氨酸和腺苷结构杂合的锍分子。作为人体中第二大辅助因子,其主要功能是作为SAM依赖性甲基转移酶(MTases)的甲基供体。生物分子由此产生的甲基化是表观遗传调控、细胞信号传导和代谢物降解中的一种重要生化机制。最近,许多SAM类似物已被开发为合成辅助因子,用于在MTase底物上转移活化基团,以进行下游连接和鉴定。同时,基于SAM支架构建或衍生的新化合物已被设计并测试为重要MTase靶点的选择性抑制剂。在此,我们总结了SAM类似物作为MTases化学生物学工具的最新进展和应用。

相似文献

1
SAM/SAH Analogs as Versatile Tools for SAM-Dependent Methyltransferases.
ACS Chem Biol. 2016 Mar 18;11(3):583-97. doi: 10.1021/acschembio.5b00812. Epub 2015 Nov 16.
3
[Analogs of S-Adenosyl-L-Methionine in Studies of Methyltransferases].
Mol Biol (Mosk). 2022 Mar-Apr;56(2):296-319. doi: 10.31857/S0026898422020148.
6
Insights into S-adenosyl-l-methionine (SAM)-dependent methyltransferase related diseases and genetic polymorphisms.
Mutat Res Rev Mutat Res. 2021 Jul-Dec;788:108396. doi: 10.1016/j.mrrev.2021.108396. Epub 2021 Oct 7.
7
Synthesis of adenine dinucleosides SAM analogs as specific inhibitors of SARS-CoV nsp14 RNA cap guanine-N7-methyltransferase.
Eur J Med Chem. 2020 Sep 1;201:112557. doi: 10.1016/j.ejmech.2020.112557. Epub 2020 Jun 12.
8
Conserved sequence motifs in plant S-adenosyl-L-methionine-dependent methyltransferases.
Plant Mol Biol. 1998 Jul;37(4):663-74. doi: 10.1023/a:1006035210889.

引用本文的文献

3
Structural characteristics and SARs of EZH2 inhibitors.
Mol Divers. 2025 Jul 1. doi: 10.1007/s11030-025-11272-w.
4
Structure-Guided Design of a KMT9 Inhibitor Prodrug with Cellular Activity.
J Med Chem. 2025 Jul 10;68(13):13295-13320. doi: 10.1021/acs.jmedchem.4c02953. Epub 2025 Jun 17.
5
Zika virus modulates arthropod histone methylation for its survival in mosquito cells.
PLoS One. 2025 Feb 13;20(2):e0319290. doi: 10.1371/journal.pone.0319290. eCollection 2025.
6
Mitochondria and its epigenetic dynamics: Insight into synaptic regulation and synaptopathies.
Funct Integr Genomics. 2025 Jan 23;25(1):26. doi: 10.1007/s10142-025-01530-3.
7
Biocatalytic synthesis of ribonucleoside analogues using nucleoside transglycosylase-2.
Chem Sci. 2024 Dec 11;16(3):1302-1307. doi: 10.1039/d4sc07521h. eCollection 2025 Jan 15.
8
Understanding Quorum-Sensing and Biofilm Forming in Anaerobic Bacterial Communities.
Int J Mol Sci. 2024 Nov 28;25(23):12808. doi: 10.3390/ijms252312808.
9
Small-molecule inhibition of SARS-CoV-2 NSP14 RNA cap methyltransferase.
Nature. 2025 Jan;637(8048):1178-1185. doi: 10.1038/s41586-024-08320-0. Epub 2024 Dec 11.

本文引用的文献

1
Coupling of a Nucleoside with DNA by a Methyltransferase.
Angew Chem Int Ed Engl. 1998 Nov 2;37(20):2888-2891. doi: 10.1002/(SICI)1521-3773(19981102)37:20<2888::AID-ANIE2888>3.0.CO;2-4.
2
Targeting DOT1L and HOX gene expression in MLL-rearranged leukemia and beyond.
Exp Hematol. 2015 Aug;43(8):673-84. doi: 10.1016/j.exphem.2015.05.012. Epub 2015 Jun 25.
3
N-mustard analogs of S-adenosyl-L-methionine as biochemical probes of protein arginine methylation.
Bioorg Med Chem. 2015 Aug 1;23(15):5050-5055. doi: 10.1016/j.bmc.2015.05.001. Epub 2015 May 11.
4
Chemical biology of protein arginine modifications in epigenetic regulation.
Chem Rev. 2015 Jun 10;115(11):5413-61. doi: 10.1021/acs.chemrev.5b00003. Epub 2015 May 13.
5
Discovery of a Dual PRMT5-PRMT7 Inhibitor.
ACS Med Chem Lett. 2015 Mar 2;6(4):408-12. doi: 10.1021/ml500467h. eCollection 2015 Apr 9.
6
Kinetic mechanism of protein N-terminal methyltransferase 1.
J Biol Chem. 2015 May 1;290(18):11601-10. doi: 10.1074/jbc.M114.626846. Epub 2015 Mar 14.
7
Design, synthesis, and kinetic analysis of potent protein N-terminal methyltransferase 1 inhibitors.
Org Biomol Chem. 2015 Apr 14;13(14):4149-54. doi: 10.1039/c5ob00120j. Epub 2015 Feb 25.
8
Allele-specific chemical genetics: concept, strategies, and applications.
ACS Chem Biol. 2015 Feb 20;10(2):343-63. doi: 10.1021/cb500651d. Epub 2014 Dec 12.
9
Chemical probes of histone lysine methyltransferases.
ACS Chem Biol. 2015 Jan 16;10(1):40-50. doi: 10.1021/cb500785t. Epub 2014 Nov 25.
10
Targeting DNA methylation with small molecules: what's next?
J Med Chem. 2015 Mar 26;58(6):2569-83. doi: 10.1021/jm500843d. Epub 2014 Dec 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验