Suppr超能文献

细胞周期调控基因CDKN2A的功能丧失突变对人类葡萄糖稳态的影响。

Loss-of-Function Mutations in the Cell-Cycle Control Gene CDKN2A Impact on Glucose Homeostasis in Humans.

作者信息

Pal Aparna, Potjer Thomas P, Thomsen Soren K, Ng Hui Jin, Barrett Amy, Scharfmann Raphael, James Tim J, Bishop D Timothy, Karpe Fredrik, Godsland Ian F, Vasen Hans F A, Newton-Bishop Julia, Pijl Hanno, McCarthy Mark I, Gloyn Anna L

机构信息

Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, U.K.

Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands.

出版信息

Diabetes. 2016 Feb;65(2):527-33. doi: 10.2337/db15-0602. Epub 2015 Nov 5.

Abstract

At the CDKN2A/B locus, three independent signals for type 2 diabetes risk are located in a noncoding region near CDKN2A. The disease-associated alleles have been implicated in reduced β-cell function, but the underlying mechanism remains elusive. In mice, β-cell-specific loss of Cdkn2a causes hyperplasia, while overexpression leads to diabetes, highlighting CDKN2A as a candidate effector transcript. Rare CDKN2A loss-of-function mutations are a cause of familial melanoma and offer the opportunity to determine the impact of CDKN2A haploinsufficiency on glucose homeostasis in humans. To test the hypothesis that such individuals have improved β-cell function, we performed oral and intravenous glucose tolerance tests on mutation carriers and matched control subjects. Compared with control subjects, carriers displayed increased insulin secretion, impaired insulin sensitivity, and reduced hepatic insulin clearance. These results are consistent with a model whereby CDKN2A loss affects a range of different tissues, including pancreatic β-cells and liver. To test for direct effects of CDKN2A-loss on β-cell function, we performed knockdown in a human β-cell line, EndoC-bH1. This revealed increased insulin secretion independent of proliferation. Overall, we demonstrated that CDKN2A is an important regulator of glucose homeostasis in humans, thus supporting its candidacy as an effector transcript for type 2 diabetes-associated alleles in the region.

摘要

在CDKN2A/B基因座,2型糖尿病风险的三个独立信号位于CDKN2A附近的一个非编码区域。与疾病相关的等位基因与β细胞功能降低有关,但其潜在机制仍不清楚。在小鼠中,Cdkn2a的β细胞特异性缺失会导致增生,而过表达则会导致糖尿病,这突出了CDKN2A作为候选效应转录本的可能性。罕见的CDKN2A功能丧失突变是家族性黑色素瘤的一个原因,这为确定CDKN2A单倍体不足对人类葡萄糖稳态的影响提供了机会。为了验证这些个体具有改善的β细胞功能这一假设,我们对突变携带者和匹配的对照受试者进行了口服和静脉葡萄糖耐量试验。与对照受试者相比,携带者表现出胰岛素分泌增加、胰岛素敏感性受损和肝脏胰岛素清除率降低。这些结果与CDKN2A缺失影响包括胰腺β细胞和肝脏在内的一系列不同组织的模型一致。为了测试CDKN2A缺失对β细胞功能的直接影响,我们在人β细胞系EndoC-bH1中进行了敲低实验。这显示出胰岛素分泌增加且与增殖无关。总体而言,我们证明了CDKN2A是人类葡萄糖稳态的重要调节因子,从而支持其作为该区域2型糖尿病相关等位基因的效应转录本的候选资格。

相似文献

1
Loss-of-Function Mutations in the Cell-Cycle Control Gene CDKN2A Impact on Glucose Homeostasis in Humans.
Diabetes. 2016 Feb;65(2):527-33. doi: 10.2337/db15-0602. Epub 2015 Nov 5.
2
Loss-of-function mutations in ABCA1 and enhanced β-cell secretory capacity in young adults.
Diabetes. 2015 Jan;64(1):193-9. doi: 10.2337/db14-0436. Epub 2014 Aug 14.
5
T2D Genome-Wide Association Study Risk SNPs Impact Locus Gene Expression and Proliferation in Human Islets.
Diabetes. 2018 May;67(5):872-884. doi: 10.2337/db17-1055. Epub 2018 Feb 6.
7
Metabolic-associated fatty liver disease is characterized by a post-oral glucose load hyperinsulinemia in individuals with mild metabolic alterations.
Am J Physiol Endocrinol Metab. 2024 May 1;326(5):E616-E625. doi: 10.1152/ajpendo.00294.2023. Epub 2024 Mar 13.
8
Effects of Hypertriglyceridemia With or Without NEFA Elevation on β-cell Function and Insulin Clearance and Sensitivity.
J Clin Endocrinol Metab. 2025 Feb 18;110(3):e667-e674. doi: 10.1210/clinem/dgae276.
9
The inhibitory effect of recent type 2 diabetes risk loci on insulin secretion is modulated by insulin sensitivity.
J Clin Endocrinol Metab. 2009 May;94(5):1775-80. doi: 10.1210/jc.2008-1876. Epub 2009 Mar 3.
10
Impact of gain-of-function mutations in the low-density lipoprotein receptor-related protein 5 (LRP5) on glucose and lipid homeostasis.
Osteoporos Int. 2017 Jun;28(6):2011-2017. doi: 10.1007/s00198-017-3977-4. Epub 2017 Mar 10.

引用本文的文献

1
The emerging role of Fusobacteria in carcinogenesis.
Eur J Clin Invest. 2024 Dec;54 Suppl 2(Suppl 2):e14353. doi: 10.1111/eci.14353.
2
Mechanisms of cuproptosis and its relevance to distinct diseases.
Apoptosis. 2024 Aug;29(7-8):981-1006. doi: 10.1007/s10495-024-01983-0. Epub 2024 Jun 2.
3
Cuproptosis-Related Biomarkers and Characterization of Immune Infiltration in Sepsis.
J Inflamm Res. 2024 Apr 22;17:2459-2478. doi: 10.2147/JIR.S452980. eCollection 2024.
4
Heat tolerance in is influenced by oxygen conditions and mutations in cell size control pathways.
Philos Trans R Soc Lond B Biol Sci. 2024 Feb 26;379(1896):20220490. doi: 10.1098/rstb.2022.0490. Epub 2024 Jan 8.
5
Pancreatic β-cell senescence in diabetes: mechanisms, markers and therapies.
Front Endocrinol (Lausanne). 2023 Aug 31;14:1212716. doi: 10.3389/fendo.2023.1212716. eCollection 2023.
6
P16INK4A-More Than a Senescence Marker.
Life (Basel). 2022 Aug 28;12(9):1332. doi: 10.3390/life12091332.
8
Genes and Longevity of Lifespan.
Int J Mol Sci. 2022 Jan 28;23(3):1499. doi: 10.3390/ijms23031499.
9
Co-expression network analysis of frontal cortex during the progression of Alzheimer's disease.
Cereb Cortex. 2022 Nov 9;32(22):5108-5120. doi: 10.1093/cercor/bhac001.
10
Pancreatic Progenitor Commitment Is Marked by an Increase in Ink4a/Arf Expression.
Biomolecules. 2021 Jul 30;11(8):1124. doi: 10.3390/biom11081124.

本文引用的文献

1
Functional genomics of the CDKN2A/B locus in cardiovascular and metabolic disease: what have we learned from GWASs?
Trends Endocrinol Metab. 2015 Apr;26(4):176-84. doi: 10.1016/j.tem.2015.01.008. Epub 2015 Mar 3.
2
Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism.
Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13924-9. doi: 10.1073/pnas.1402665111. Epub 2014 Sep 8.
3
Cyclin D1-Cdk4 controls glucose metabolism independently of cell cycle progression.
Nature. 2014 Jun 26;510(7506):547-51. doi: 10.1038/nature13267. Epub 2014 May 25.
4
Cdkn2a/p16Ink4a regulates fasting-induced hepatic gluconeogenesis through the PKA-CREB-PGC1α pathway.
Diabetes. 2014 Oct;63(10):3199-209. doi: 10.2337/db13-1921. Epub 2014 May 1.
5
Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants.
Nat Genet. 2014 Feb;46(2):136-143. doi: 10.1038/ng.2870. Epub 2014 Jan 12.
8
A genetically engineered human pancreatic β cell line exhibiting glucose-inducible insulin secretion.
J Clin Invest. 2011 Sep;121(9):3589-97. doi: 10.1172/JCI58447. Epub 2011 Aug 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验