Suppr超能文献

野生型大肠杆菌中频繁出现的丝氨酸密码子的高效重新分配

Efficient Reassignment of a Frequent Serine Codon in Wild-Type Escherichia coli.

作者信息

Ho Joanne M, Reynolds Noah M, Rivera Keith, Connolly Morgan, Guo Li-Tao, Ling Jiqiang, Pappin Darryl J, Church George M, Söll Dieter

机构信息

Department of Genetics, Harvard Medical School , Boston, Massachusetts 02115, United States.

Cold Spring Harbor Laboratory , Cold Spring Harbor, New York 11724, United States.

出版信息

ACS Synth Biol. 2016 Feb 19;5(2):163-71. doi: 10.1021/acssynbio.5b00197. Epub 2015 Nov 20.

Abstract

Expansion of the genetic code through engineering the translation machinery has greatly increased the chemical repertoire of the proteome. This has been accomplished mainly by read-through of UAG or UGA stop codons by the noncanonical aminoacyl-tRNA of choice. While stop codon read-through involves competition with the translation release factors, sense codon reassignment entails competition with a large pool of endogenous tRNAs. We used an engineered pyrrolysyl-tRNA synthetase to incorporate 3-iodo-l-phenylalanine (3-I-Phe) at a number of different serine and leucine codons in wild-type Escherichia coli. Quantitative LC-MS/MS measurements of amino acid incorporation yields carried out in a selected reaction monitoring experiment revealed that the 3-I-Phe abundance at the Ser208AGU codon in superfolder GFP was 65 ± 17%. This method also allowed quantification of other amino acids (serine, 33 ± 17%; phenylalanine, 1 ± 1%; threonine, 1 ± 1%) that compete with 3-I-Phe at both the aminoacylation and decoding steps of translation for incorporation at the same codon position. Reassignments of different serine (AGU, AGC, UCG) and leucine (CUG) codons with the matching tRNA(Pyl) anticodon variants were met with varying success, and our findings provide a guideline for the choice of sense codons to be reassigned. Our results indicate that the 3-iodo-l-phenylalanyl-tRNA synthetase (IFRS)/tRNA(Pyl) pair can efficiently outcompete the cellular machinery to reassign select sense codons in wild-type E. coli.

摘要

通过改造翻译机制来扩展遗传密码,极大地增加了蛋白质组的化学组成。这主要是通过使用选择的非经典氨酰 - tRNA通读UAG或UGA终止密码子来实现的。虽然终止密码子的通读涉及与翻译释放因子的竞争,但有义密码子重新分配则需要与大量内源性tRNA进行竞争。我们使用一种工程化的吡咯赖氨酸 - tRNA合成酶,在野生型大肠杆菌的多个不同丝氨酸和亮氨酸密码子处掺入3 - 碘 - L - 苯丙氨酸(3 - I - Phe)。在选定反应监测实验中进行的氨基酸掺入产量的定量液相色谱 - 串联质谱测量表明,超折叠绿色荧光蛋白中Ser208AGU密码子处 的3 - I - Phe丰度为65±17%。该方法还能够对在翻译的氨酰化和解码步骤中与3 - I - Phe竞争以掺入相同密码子位置的其他氨基酸(丝氨酸,33±17%;苯丙氨酸,1±1%;苏氨酸,1±1%)进行定量。用匹配的tRNA(Pyl)反密码子变体对不同的丝氨酸(AGU、AGC、UCG)和亮氨酸(CUG)密码子进行重新分配,取得了不同程度的成功,我们的研究结果为选择要重新分配的有义密码子提供了指导。我们的结果表明,3 - 碘 - L - 苯丙氨酰 - tRNA合成酶(IFRS)/tRNA(Pyl)对能够有效地胜过细胞机制,从而在野生型大肠杆菌中重新分配选定的有义密码子。

相似文献

7
Evaluating Sense Codon Reassignment with a Simple Fluorescence Screen.用简单的荧光筛选评估有义密码子重新分配
Biochemistry. 2015 Dec 22;54(50):7355-64. doi: 10.1021/acs.biochem.5b00870. Epub 2015 Dec 5.

引用本文的文献

2
Genetic Code Expansion: Recent Developments and Emerging Applications.遗传密码扩展:最新进展与新兴应用
Chem Rev. 2025 Jan 22;125(2):523-598. doi: 10.1021/acs.chemrev.4c00216. Epub 2024 Dec 31.

本文引用的文献

2
Incorporation of Unnatural Amino Acids in Response to the AGG Codon.通过对AGG密码子的响应掺入非天然氨基酸。
ACS Chem Biol. 2015 Jul 17;10(7):1648-53. doi: 10.1021/acschembio.5b00230. Epub 2015 May 12.
3
Polyspecific pyrrolysyl-tRNA synthetases from directed evolution.通过定向进化获得的多特异性吡咯赖氨酸 - tRNA合成酶
Proc Natl Acad Sci U S A. 2014 Nov 25;111(47):16724-9. doi: 10.1073/pnas.1419737111. Epub 2014 Nov 10.
4
Mistranslation of the genetic code.遗传密码的错译。
FEBS Lett. 2014 Nov 28;588(23):4305-10. doi: 10.1016/j.febslet.2014.08.035. Epub 2014 Sep 16.
5
Towards reassigning the rare AGG codon in Escherichia coli.关于在大肠杆菌中重新分配稀有AGG密码子的研究。
Chembiochem. 2014 Aug 18;15(12):1750-4. doi: 10.1002/cbic.201400075. Epub 2014 Jul 8.
8
Expanding and reprogramming the genetic code of cells and animals.拓展和重编程细胞和动物的遗传密码。
Annu Rev Biochem. 2014;83:379-408. doi: 10.1146/annurev-biochem-060713-035737. Epub 2014 Feb 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验