Islam Mazharul M, Bredow Thomas
Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, University of Bonn , Beringstrasse 4-6, D-53115 Bonn, Germany.
J Phys Chem Lett. 2015 Nov 19;6(22):4622-6. doi: 10.1021/acs.jpclett.5b01780. Epub 2015 Nov 9.
Although the Li diffusion in single crystalline γ-LiAlO2 was studied with temperature-dependent Li-7 NMR spectroscopy and conductivity measurements recently, the exact diffusion pathways are not yet clearly identified. Therefore, the present study aims at elucidating the diffusion pathways in γ-LiAlO2 theoretically from first principles. Competing pathways for Li diffusion are investigated using the climbing-image nudged-elastic-band approach with periodic quantum-chemical density functional theory (DFT) method. Li can migrate between two regular LiO4 tetrahedral sites via Li point defect (VLi) and via a Li Frenkel defect (VLi + Lii). On the basis of calculated activation energies for Li diffusion pathways, it is concluded that Li conductivity is strongly dependent on the distribution of Li vacancies and interstitial Li in the lattice. For Frenkel defects where Lii is far away from the migrating Li atom, the calculated activation energies for jumps to nearest-neighbor vacant sites agree with experimental values.
尽管最近利用温度依赖的Li-7核磁共振光谱和电导率测量研究了单晶γ-LiAlO₂中Li的扩散,但确切的扩散路径尚未明确确定。因此,本研究旨在从第一性原理出发,从理论上阐明γ-LiAlO₂中的扩散路径。使用具有周期性量子化学密度泛函理论(DFT)方法的爬坡图像推挤弹性带方法,研究了Li扩散的竞争路径。Li可以通过Li点缺陷(VLi)和Li弗伦克尔缺陷(VLi + Lii)在两个规则的LiO₄四面体位置之间迁移。基于计算出的Li扩散路径的活化能,得出Li电导率强烈依赖于晶格中Li空位和间隙Li的分布。对于Lii远离迁移Li原子的弗伦克尔缺陷,计算出的跳跃到最近邻空位的活化能与实验值一致。