Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, PR China.
Phys Chem Chem Phys. 2012 Feb 7;14(5):1596-606. doi: 10.1039/c2cp23636b. Epub 2011 Dec 16.
In this study, both experimental ionic conductivity measurements and the first-principles simulations are employed to investigate the Li(+) ionic diffusion properties in lithium-based imides (Li(2)NH, Li(2)Mg(NH)(2) and Li(2)Ca(NH)(2)) and lithium amide (LiNH(2)). The experimental results show that Li(+) ions present superionic conductivity in Li(2)NH (2.54 × 10(-4) S cm(-1)) and moderate ionic conductivity in Li(2)Ca(NH)(2) (6.40 × 10(-6) S cm(-1)) at room temperature; while conduction of Li(+) ions is hardly detectable in Li(2)Mg(NH)(2) and LiNH(2) at room temperature. The simulation results indicate that Li(+) ion diffusion in Li(2)NH may be mediated by Frenkel pair defects or charged vacancies, and the diffusion pathway is more likely via a series of intermediate jumps between octahedral and tetrahedral sites along the [001] direction. The calculated activation energy and pre-exponential factor for Li(+) ion conduction in Li(2)NH are well comparable with the experimentally determined values, showing the consistency of experimental and theoretical investigations. The calculation of the defect formation energy in LiNH(2) reveals that Li defects are difficult to create to mediate the Li(+) ion diffusion, resulting in the poor Li(+) ion conduction in LiNH(2) at room temperature.
在这项研究中,我们采用实验离子电导率测量和第一性原理模拟相结合的方法,研究了锂离子在锂基亚胺(Li2NH、Li2Mg(NH)2和 Li2Ca(NH)2)和锂酰胺(LiNH2)中的扩散性质。实验结果表明,Li+离子在室温下具有超离子电导率,Li2NH(2.54×10-4 S cm-1)的离子电导率较高,Li2Ca(NH)2(6.40×10-6 S cm-1)的离子电导率适中;而 Li2Mg(NH)2和 LiNH2在室温下几乎检测不到 Li+离子的传导。模拟结果表明,Li+离子在 Li2NH 中的扩散可能是通过弗兰克对缺陷或带电空位介导的,并且扩散途径更可能是沿着[001]方向在八面体和四面体位置之间通过一系列中间跳跃进行。在 Li2NH 中计算得到的 Li+离子传导的活化能和指前因子与实验确定的值非常吻合,表明实验和理论研究的一致性。对 LiNH2 中缺陷形成能的计算表明,Li 缺陷难以形成来介导 Li+离子的扩散,导致 LiNH2 在室温下 Li+离子的传导性较差。