Prieto Carmen, Destouni Georgia
Department of Physical Geography, Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden.
PLoS One. 2015 Nov 6;10(11):e0141207. doi: 10.1371/journal.pone.0141207. eCollection 2015.
Our possibility to appropriately detect, interpret and respond to climate-driven phenological changes depends on our ability to model and predict the changes. This ability may be hampered by non-linearity in climate-phenological relations, and by spatiotemporal variability and scale mismatches of climate and phenological data. A modeling methodology capable of handling such complexities can be a powerful tool for phenological change projection. Here we develop such a methodology using citizen scientists' observations of first flight dates for orange tip butterflies (Anthocharis cardamines) in three areas extending along a steep climate gradient. The developed methodology links point data of first flight observations to calculated cumulative degree-days until first flight based on gridded temperature data. Using this methodology we identify and quantify a first flight model that is consistent across different regions, data support scales and assumptions of subgrid variability and observation bias. Model application to observed warming over the past 60 years demonstrates the model usefulness for assessment of climate-driven first flight change. The cross-regional consistency of the model implies predictive capability for future changes, and calls for further application and testing of analogous modeling approaches to other species, phenological variables and parts of the world.
我们能否适当地检测、解读气候驱动的物候变化并做出响应,取决于我们对这些变化进行建模和预测的能力。这种能力可能会受到气候与物候关系的非线性影响,以及气候和物候数据的时空变异性和尺度不匹配的阻碍。一种能够处理此类复杂性的建模方法可能是预测物候变化的有力工具。在此,我们利用公民科学家对沿陡峭气候梯度延伸的三个区域的柑橘凤蝶(Anthocharis cardamines)首次飞行日期的观测,开发了这样一种方法。所开发的方法将首次飞行观测的点数据与基于网格化温度数据计算的直至首次飞行的累积度日数联系起来。使用这种方法,我们识别并量化了一个在不同区域、数据支持尺度以及次网格变异性和观测偏差假设方面都一致的首次飞行模型。将该模型应用于过去60年观测到的变暖情况,证明了该模型在评估气候驱动的首次飞行变化方面的实用性。该模型的跨区域一致性意味着对未来变化具有预测能力,并呼吁对其他物种、物候变量和世界其他地区进一步应用和测试类似的建模方法。