Venkatesan Arunkumar, Hassan Sameer, Palaniyandi Kannan, Narayanan Sujatha
Department of Immunology, National Institute for Research in Tuberculosis, #1, Mayor Sathiyamoorthy Road, Chetpet, Chennai 600 031, India.
Department of Bioinformatics, National Institute for Research in Tuberculosis, #1, Mayor Sathiyamoorthy Road, Chetpet, Chennai 600 031, India.
J Mol Graph Model. 2015 Nov;62:283-293. doi: 10.1016/j.jmgm.2015.10.011. Epub 2015 Oct 27.
Protein-protein interactions control the diverse and essential molecular processes inside the cell. To maintain the cellular physiology, protein kinases not only signal their substrates through reversible phosphorylation, but they also physically interact with them. PknI, a serine/threonine protein kinase of Mycobacterium tuberculosis is known to be important for cellular homoeostasis. In this study, we have identified the interacting proteins for PknI. We screened for proteins interacting with PknI using an in vitro assay, Far-western blot. This protein kinase specifically interacts with two peroxidase proteins of M. tuberculosis, Rv2159c and Rv0148. The PknI-Rv2159c interaction pair was further studied for the critical amino acid residues in Rv2159c that are responsible for the interaction. Rv2159c, a hypothetical protein is predicted to be an antioxidant with peroxidase activity. We performed homology modelling of Rv2159c protein and molecular docking using multiple docking servers such as Z-Dock and ClusPro. Further, the most favorable conformation of PknI-Rv2159c interaction was obtained using molecular dynamics simulation. The critical amino acid residues of the Rv2159c involved in interaction with PknI were identified. Mutation and docking analysis showed that the Ala1-Gly2-Trp3 residues in Rv2159c structure are responsible for the interaction. The free binding energy between the wild type and mutant complexes using MM-GBSA has provided insight about the stability of PknI-Rv2159c interaction. We propose that, PknI physically interacts with Rv2159c both in vitro and in silico studies.
蛋白质-蛋白质相互作用控制着细胞内各种重要的分子过程。为维持细胞生理功能,蛋白激酶不仅通过可逆磷酸化作用向其底物发出信号,还与底物发生物理相互作用。已知结核分枝杆菌的丝氨酸/苏氨酸蛋白激酶PknI对细胞稳态很重要。在本研究中,我们鉴定了与PknI相互作用的蛋白质。我们使用体外检测方法——Far-western印迹法筛选与PknI相互作用的蛋白质。这种蛋白激酶特异性地与结核分枝杆菌的两种过氧化物酶蛋白Rv2159c和Rv0148相互作用。进一步研究了Rv2159c中负责该相互作用的关键氨基酸残基,以确定PknI-Rv2159c相互作用对。Rv2159c是一种假定蛋白,预计是具有过氧化物酶活性的抗氧化剂。我们使用Z-Dock和ClusPro等多个对接服务器对Rv2159c蛋白进行同源建模和分子对接。此外,通过分子动力学模拟获得了PknI-Rv2159c相互作用的最有利构象。鉴定了Rv2159c中与PknI相互作用的关键氨基酸残基。突变和对接分析表明,Rv2159c结构中的Ala1-Gly2-Trp3残基负责该相互作用。使用MM-GBSA计算野生型和突变体复合物之间的自由结合能,为了解PknI-Rv2159c相互作用的稳定性提供了线索。我们提出,在体外和计算机模拟研究中,PknI均与Rv2159c发生物理相互作用。