Suppr超能文献

探索 CD26-窖蛋白 1 相互作用中的构象动态和关键氨基酸及潜在的治疗干预措施。

Exploring the conformational dynamics and key amino acids in the CD26-caveolin-1 interaction and potential therapeutic interventions.

机构信息

Medical Research Center, People's Hospital of Longhua, Shenzhen, China.

出版信息

Medicine (Baltimore). 2024 May 31;103(22):e38367. doi: 10.1097/MD.0000000000038367.

Abstract

This study aimed to decipher the interaction between CD26 and caveolin-1, key proteins involved in cell signaling and linked to various diseases. Using computational methods, we predicted their binding conformations and assessed stability through 100 ns molecular dynamics (MD) simulations. We identified two distinct binding conformations (con1 and con4), with con1 exhibiting superior stability. In con1, specific amino acids in CD26, namely GLU237, TYR241, TYR248, and ARG147, were observed to engage in interactions with the F-J chain of Caveolin-1, establishing hydrogen bonds and cation or π-π interactions. Meanwhile, in con4, CD26 amino acids ARG253, LYS250, and TYR248 interacted with the J chain of Caveolin-1 via hydrogen bonds, cation-π interactions, and π-π interactions. Virtual screening also revealed potential small-molecule modulators, including Crocin, Poliumoside, and Canagliflozin, that could impact this interaction. Additionally, predictive analyses were conducted on the potential bioactivity, drug-likeness, and ADMET properties of these three compounds. These findings offer valuable insights into the binding mechanism, paving the way for new therapeutic strategies. However, further validation is required before clinical application. In summary, we provide a detailed understanding of the CD26 and caveolin-1 interaction, identifying key amino acids and potential modulators, essential for developing targeted therapies.

摘要

本研究旨在破译 CD26 和 caveolin-1 之间的相互作用,这两种关键蛋白都参与细胞信号转导,并与各种疾病有关。我们使用计算方法预测了它们的结合构象,并通过 100ns 的分子动力学(MD)模拟评估了它们的稳定性。我们确定了两种不同的结合构象(con1 和 con4),其中 con1 表现出更好的稳定性。在 con1 中,CD26 中的特定氨基酸,即 GLU237、TYR241、TYR248 和 ARG147,被观察到与 Caveolin-1 的 F-J 链相互作用,形成氢键和阳离子或π-π相互作用。同时,在 con4 中,CD26 的氨基酸 ARG253、LYS250 和 TYR248 通过氢键、阳离子-π相互作用和π-π相互作用与 Caveolin-1 的 J 链相互作用。虚拟筛选还揭示了一些潜在的小分子调节剂,包括藏红花酸、波罗苷和坎格列净,它们可能会影响这种相互作用。此外,还对这三种化合物的潜在生物活性、类药性和 ADMET 性质进行了预测分析。这些发现为该相互作用的结合机制提供了有价值的见解,为新的治疗策略铺平了道路。然而,在临床应用之前,还需要进一步验证。总之,我们详细了解了 CD26 和 caveolin-1 的相互作用,确定了关键的氨基酸和潜在的调节剂,这对于开发靶向治疗方法至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdcd/11142805/c011bc14d144/medi-103-e38367-g001.jpg

相似文献

2
T-cell activation via CD26 and caveolin-1 in rheumatoid synovium.
Mod Rheumatol. 2006;16(1):3-13. doi: 10.1007/s10165-005-0452-4.
3
Caveolin-1, a binding protein of CD26, is essential for the anti-inflammatory effects of dipeptidyl peptidase-4 inhibitors on human and mouse macrophages.
Biochem Biophys Res Commun. 2018 Jan 1;495(1):223-229. doi: 10.1016/j.bbrc.2017.11.016. Epub 2017 Nov 4.
4
CD26 up-regulates expression of CD86 on antigen-presenting cells by means of caveolin-1.
Proc Natl Acad Sci U S A. 2004 Sep 28;101(39):14186-91. doi: 10.1073/pnas.0405266101. Epub 2004 Sep 7.
6
Caveolin-1 triggers T-cell activation via CD26 in association with CARMA1.
J Biol Chem. 2007 Mar 30;282(13):10117-10131. doi: 10.1074/jbc.M609157200. Epub 2007 Feb 6.
7
Role of CD26/dipeptidyl peptidase IV in human T cell activation and function.
Front Biosci. 2008 Jan 1;13:2299-310. doi: 10.2741/2844.
8
U-shaped caveolin-1 conformations are tightly regulated by hydrogen bonds with lipids.
J Comput Chem. 2019 Jun 15;40(16):1570-1577. doi: 10.1002/jcc.25807. Epub 2019 Mar 3.
9
Molecular insights on the coronavirus MERS-CoV interaction with the CD26 receptor.
Virus Res. 2024 Apr;342:199330. doi: 10.1016/j.virusres.2024.199330. Epub 2024 Feb 3.

引用本文的文献

1
Unveiling Natural Power: Morin and Myricetin as Potent Inhibitors of Histidinol-Phosphate Aminotransferase in Drug-Resistant .
ACS Omega. 2025 Feb 20;10(8):7920-7936. doi: 10.1021/acsomega.4c08753. eCollection 2025 Mar 4.

本文引用的文献

3
Computational Investigations of AntiViral Lignan Derivatives as Potent Inhibitors of SARS CoV-2.
ChemistrySelect. 2022 Jul 27;7(28):e202202069. doi: 10.1002/slct.202202069. Epub 2022 Jul 26.
4
Therapeutic Perspectives of CD26 Inhibitors in Imune-Mediated Diseases.
Molecules. 2022 Jul 14;27(14):4498. doi: 10.3390/molecules27144498.
5
Molecular architecture of the human caveolin-1 complex.
Sci Adv. 2022 May 13;8(19):eabn7232. doi: 10.1126/sciadv.abn7232. Epub 2022 May 11.
6
Protein-Protein Binding Free Energy Predictions with the MM/PBSA Approach Complemented with the Gaussian-Based Method for Entropy Estimation.
ACS Omega. 2022 Mar 22;7(13):11057-11067. doi: 10.1021/acsomega.1c07037. eCollection 2022 Apr 5.
7
Substrate Stiffness-Driven Membrane Tension Modulates Vesicular Trafficking Caveolin-1.
ACS Nano. 2022 Mar 22;16(3):4322-4337. doi: 10.1021/acsnano.1c10534. Epub 2022 Mar 7.
8
Computational Study on Potential Novel Anti-Ebola Virus Protein VP35 Natural Compounds.
Biomedicines. 2021 Nov 30;9(12):1796. doi: 10.3390/biomedicines9121796.
10
In silico analysis of a potential antidiabetic phytochemical erythrin against therapeutic targets of diabetes.
In Silico Pharmacol. 2021 Jan 3;9(1):5. doi: 10.1007/s40203-020-00065-8. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验