Suppr超能文献

具有电池-超级电容器混合行为的 γ-Fe₂O₃ 纳晶微球,用于优异的锂存储。

γ-Fe₂O₃ Nanocrystalline Microspheres with Hybrid Behavior of Battery-Supercapacitor for Superior Lithium Storage.

机构信息

Peking University , Shenzhen Graduate School, School of Advanced Materials, Shenzhen 518055, China.

School of Materials Science and Engineering, China University of Mining & Technology , Xuzhou 221116, China.

出版信息

ACS Appl Mater Interfaces. 2015 Dec 2;7(47):26284-90. doi: 10.1021/acsami.5b08756. Epub 2015 Nov 17.

Abstract

Maghemite (γ-Fe2O3) nanocrystalline microspheres (MNMs) self-assembled with 52 nm nanocrystals bridged with FeOOH around grain boundaries were formed by solvothermal reaction and thermal oxidation. The unique architecture endows the MNMs with the lithium storage behavior of a hybrid battery-supercapacitor electrode: initial charge capacity of 1060 mAh g(-1) at the 100 mA g(-1) rate, stable cyclic capacity of 1077.9 mAh g(-1) at the same rate after 140 cycles, and rate capability of 538.8 mAh g(-1) at 2400 mA g(-1). This outstanding performance was attributed to the nanocrystal superiority, which shortens the Li(+) diffusion paths. The mechanism of this hybrid anode material was investigated with experimental measurements and structural analysis. The results indicate that at the first discharge, the MNM nanocrystal microsphere, whose structure can buffer the volume change that occurs during lithiation/delithiation, goes through four stages: Li(+) insertion in cation vacancies, spinel-to-rocksalt transformation, Li(+) intercalation of Li(1.75+x)Fe2O3 nanocrystals, and interfacial Li storage around nanocrystal boundaries. Only the latter two stages were reversible at and after the second charging/discharging cycle, exhibiting the hybrid behavior of a battery-supercapacitor with superior lithium storage.

摘要

磁赤铁矿 (γ-Fe2O3) 纳米晶微球 (MNMs) 由溶剂热反应和热氧化形成,由 bridged FeOOH 连接的 52nm 纳米晶自组装而成。独特的结构使 MNMs 具有混合电池-超级电容器电极的储锂行为:在 100mA g(-1) 的电流密度下,初始充电容量为 1060mAh g(-1),140 次循环后在相同电流密度下稳定循环容量为 1077.9mAh g(-1),在 2400mA g(-1) 的电流密度下具有 538.8mAh g(-1) 的倍率性能。这种优异的性能归因于纳米晶的优越性,缩短了 Li(+)的扩散路径。通过实验测量和结构分析研究了这种混合阳极材料的机理。结果表明,在首次放电过程中,MNM 纳米晶微球结构可以缓冲嵌锂/脱锂过程中的体积变化,经历四个阶段:阳离子空位中的 Li(+)插入、尖晶石到岩盐的转变、Li(1.75+x)Fe2O3 纳米晶的 Li(+)嵌入以及纳米晶边界周围的界面 Li 存储。只有后两个阶段在第二次充电/放电循环及之后是可逆的,表现出具有优越储锂性能的电池-超级电容器的混合行为。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验