Suppr超能文献

利用“大数据”验证药品审批过程中所做的声明。

Using 'big data' to validate claims made in the pharmaceutical approval process.

作者信息

Wasser Thomas, Haynes Kevin, Barron John, Cziraky Mark

机构信息

a Healthcore Inc. , Wilmington , DE USA.

出版信息

J Med Econ. 2015;18(12):1013-9. doi: 10.3111/13696998.2015.1108919. Epub 2015 Nov 7.

Abstract

Big Data in the healthcare setting refers to the storage, assimilation, and analysis of large quantities of information regarding patient care. These data can be collected and stored in a wide variety of ways including electronic medical records collected at the patient bedside, or through medical records that are coded and passed to insurance companies for reimbursement. When these data are processed it is possible to validate claims as a part of the regulatory review process regarding the anticipated performance of medications and devices. In order to analyze properly claims by manufacturers and others, there is a need to express claims in terms that are testable in a timeframe that is useful and meaningful to formulary committees. Claims for the comparative benefits and costs, including budget impact, of products and devices need to be expressed in measurable terms, ideally in the context of submission or validation protocols. Claims should be either consistent with accessible Big Data or able to support observational studies where Big Data identifies target populations. Protocols should identify, in disaggregated terms, key variables that would lead to direct or proxy validation. Once these variables are identified, Big Data can be used to query massive quantities of data in the validation process. Research can be passive or active in nature. Passive, where the data are collected retrospectively; active where the researcher is prospectively looking for indicators of co-morbid conditions, side-effects or adverse events, testing these indicators to determine if claims are within desired ranges set forth by the manufacturer. Additionally, Big Data can be used to assess the effectiveness of therapy through health insurance records. This, for example, could indicate that disease or co-morbid conditions cease to be treated. Understanding the basic strengths and weaknesses of Big Data in the claim validation process provides a glimpse of the value that this research can provide to industry. Big Data can support a research agenda that focuses on the process of claims validation to support formulary submissions as well as inputs to ongoing disease area and therapeutic class reviews.

摘要

医疗环境中的大数据是指对大量有关患者护理的信息进行存储、整合和分析。这些数据可以通过多种方式收集和存储,包括在患者床边收集的电子病历,或通过编码并传递给保险公司以进行报销的病历。在处理这些数据时,有可能将索赔作为药物和器械预期性能监管审查过程的一部分进行验证。为了正确分析制造商和其他方的索赔,需要以可在对处方委员会有用且有意义的时间范围内进行测试的术语来表述索赔。产品和器械的比较效益和成本(包括预算影响)的索赔需要以可衡量的术语来表述,理想情况下是在提交或验证方案的背景下。索赔应与可获取的数据一致,或者能够支持大数据识别目标人群的观察性研究。方案应以分类的方式确定将导致直接或间接验证的关键变量。一旦确定了这些变量,就可以在验证过程中使用大数据查询大量数据。研究在性质上可以是被动的或主动的。被动研究是回顾性收集数据;主动研究是研究人员前瞻性地寻找共病状况、副作用或不良事件的指标,并测试这些指标以确定索赔是否在制造商规定的期望范围内。此外,大数据可用于通过健康保险记录评估治疗效果。例如,这可能表明疾病或共病状况不再接受治疗。了解大数据在索赔验证过程中的基本优势和劣势,可以初步了解这项研究可为行业提供的价值。大数据可以支持一项研究议程,该议程侧重于索赔验证过程,以支持处方提交以及为正在进行的疾病领域和治疗类别审查提供投入。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验