Suppr超能文献

促红细胞生成素在神经系统中的再生作用。

Regeneration in the nervous system with erythropoietin.

作者信息

Maiese Kenneth

机构信息

Cellular and Molecular Signaling, Newark, New Jersey 07101.

出版信息

Front Biosci (Landmark Ed). 2016 Jan;21(3):561-596. doi: 10.2741/4408.

Abstract

Globally, greater than 30 million individuals are afflicted with disorders of the nervous system accompanied by tens of thousands of new cases annually with limited, if any, treatment options. Erythropoietin (EPO) offers an exciting and novel therapeutic strategy to address both acute and chronic neurodegenerative disorders. EPO governs a number of critical protective and regenerative mechanisms that can impact apoptotic and autophagic programmed cell death pathways through protein kinase B (Akt), sirtuins, mammalian forkhead transcription factors, and wingless signaling. Translation of the cytoprotective pathways of EPO into clinically effective treatments for some neurodegenerative disorders has been promising, but additional work is necessary. In particular, development of new treatments with erythropoiesis-stimulating agents such as EPO brings several important challenges that involve detrimental vascular outcomes and tumorigenesis. Future work that can effectively and safely harness the complexity of the signaling pathways of EPO will be vital for the fruitful treatment of disorders of the nervous system.

摘要

在全球范围内,超过3000万人患有神经系统疾病,每年还有数以万计的新病例,而治疗选择(即便有)也非常有限。促红细胞生成素(EPO)为治疗急性和慢性神经退行性疾病提供了一种令人兴奋的新型治疗策略。EPO调控着许多关键的保护和再生机制,这些机制可通过蛋白激酶B(Akt)、沉默调节蛋白、哺乳动物叉头转录因子和无翅信号通路影响凋亡和自噬程序性细胞死亡途径。将EPO的细胞保护途径转化为针对某些神经退行性疾病的临床有效治疗方法已初见成效,但仍需开展更多工作。特别是,开发如EPO这样的促红细胞生成剂的新疗法带来了几个重要挑战,包括有害的血管后果和肿瘤发生。未来能够有效且安全地利用EPO信号通路复杂性的工作,对于成功治疗神经系统疾病至关重要。

相似文献

1
Regeneration in the nervous system with erythropoietin.
Front Biosci (Landmark Ed). 2016 Jan;21(3):561-596. doi: 10.2741/4408.
2
Regeneration in the nervous system with erythropoietin.
Front Biosci (Landmark Ed). 2016 Jan 1;21(3):561-96. doi: 10.2741/4408.
3
Forkhead Transcription Factors: Formulating a FOXO Target for Cognitive Loss.
Curr Neurovasc Res. 2017;14(4):415-420. doi: 10.2174/1567202614666171116102911.
4
Novel nervous and multi-system regenerative therapeutic strategies for diabetes mellitus with mTOR.
Neural Regen Res. 2016 Mar;11(3):372-85. doi: 10.4103/1673-5374.179032.
5
Erythropoietin: new directions for the nervous system.
Int J Mol Sci. 2012;13(9):11102-11129. doi: 10.3390/ijms130911102. Epub 2012 Sep 6.
6
Charting a course for erythropoietin in traumatic brain injury.
J Transl Sci. 2016 Mar;2(2):140-144. doi: 10.15761/jts.1000131. Epub 2016 Mar 26.
7
Prospects and Perspectives for WISP1 (CCN4) in Diabetes Mellitus.
Curr Neurovasc Res. 2020;17(3):327-331. doi: 10.2174/1567202617666200327125257.
9
Warming Up to New Possibilities with the Capsaicin Receptor TRPV1: mTOR, AMPK, and Erythropoietin.
Curr Neurovasc Res. 2017;14(2):184-189. doi: 10.2174/1567202614666170313105337.
10
Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders.
Br J Clin Pharmacol. 2016 Nov;82(5):1245-1266. doi: 10.1111/bcp.12804. Epub 2015 Dec 26.

引用本文的文献

1
Innovations in Peripheral Nerve Regeneration.
Bioengineering (Basel). 2024 Apr 30;11(5):444. doi: 10.3390/bioengineering11050444.
2
Innovative therapeutic strategies for cardiovascular disease.
EXCLI J. 2023 Jul 26;22:690-715. doi: 10.17179/excli2023-6306. eCollection 2023.
4
Cellular Metabolism: A Fundamental Component of Degeneration in the Nervous System.
Biomolecules. 2023 May 11;13(5):816. doi: 10.3390/biom13050816.
5
Neurodegeneration, memory loss, and dementia: the impact of biological clocks and circadian rhythm.
Front Biosci (Landmark Ed). 2021 Sep 30;26(9):614-627. doi: 10.52586/4971.
6
Cognitive Impairment and Dementia: Gaining Insight through Circadian Clock Gene Pathways.
Biomolecules. 2021 Jul 9;11(7):1002. doi: 10.3390/biom11071002.
8
Nicotinamide: Oversight of Metabolic Dysfunction Through SIRT1, mTOR, and Clock Genes.
Curr Neurovasc Res. 2020;17(5):765-783. doi: 10.2174/1567202617999201111195232.
9
Dysregulation of metabolic flexibility: The impact of mTOR on autophagy in neurodegenerative disease.
Int Rev Neurobiol. 2020;155:1-35. doi: 10.1016/bs.irn.2020.01.009. Epub 2020 Aug 11.
10
New Insights for nicotinamide: Metabolic disease, autophagy, and mTOR.
Front Biosci (Landmark Ed). 2020 Jun 1;25(11):1925-1973. doi: 10.2741/4886.

本文引用的文献

1
FoxO proteins in the nervous system.
Anal Cell Pathol (Amst). 2015;2015:569392. doi: 10.1155/2015/569392. Epub 2015 Jun 10.
3
The Neuroprotective Effect of Erythropoietin on Rotenone-Induced Neurotoxicity in SH-SY5Y Cells Through the Induction of Autophagy.
Mol Neurobiol. 2016 Aug;53(6):3812-3821. doi: 10.1007/s12035-015-9316-x. Epub 2015 Jul 9.
4
Influence of age-related learning and memory capacity of mice: different effects of a high and low caloric diet.
Aging Clin Exp Res. 2016 Apr;28(2):303-11. doi: 10.1007/s40520-015-0398-0. Epub 2015 Jul 3.
6
Sirtuins, aging, and cardiovascular risks.
Age (Dordr). 2015 Aug;37(4):9804. doi: 10.1007/s11357-015-9804-y. Epub 2015 Jun 23.
9
Wnt3a protects SH-SY5Y cells against 6-hydroxydopamine toxicity by restoration of mitochondria function.
Transl Neurodegener. 2015 Jun 16;4:11. doi: 10.1186/s40035-015-0033-1. eCollection 2015.
10
New Insights for Oxidative Stress and Diabetes Mellitus.
Oxid Med Cell Longev. 2015;2015:875961. doi: 10.1155/2015/875961. Epub 2015 May 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验