Suppr超能文献

基于多尺度热核的体积形态特征

Multi-scale Heat Kernel based Volumetric Morphology Signature.

作者信息

Wang Gang, Wang Yalin

机构信息

Ludong University, School of Information and Electrical Engineering, Yantai, China, 264025.

Arizona State University, School of Computing, Informatics, and Decision Systems Engineering, Tempe, AZ, USA, 878809.

出版信息

Med Image Comput Comput Assist Interv. 2015;9351:751-9. doi: 10.1007/978-3-319-24574-4_90.

Abstract

Here we introduce a novel multi-scale heat kernel based regional shape statistical approach that may improve statistical power on the structural analysis. The mechanism of this analysis is driven by the graph spectrum and the heat kernel theory, to capture the volumetric geometry information in the constructed tetrahedral mesh. In order to capture profound volumetric changes, we first use the volumetric Laplace-Beltrami operator to determine the point pair correspondence between two boundary surfaces by computing the streamline in the tetrahedral mesh. Secondly, we propose a multi-scale volumetric morphology signature to describe the transition probability by random walk between the point pairs, which reflects the inherent geometric characteristics. Thirdly, a point distribution model is applied to reduce the dimensionality of the volumetric morphology signatures and generate the internal structure features. The multi-scale and physics based internal structure features may bring stronger statistical power than other traditional methods for volumetric morphology analysis. To validate our method, we apply support vector machine to classify synthetic data and brain MR images. In our experiments, the proposed work outperformed FreeSurfer thickness features in Alzheimer's disease patient and normal control subject classification analysis.

摘要

在此,我们介绍一种基于新型多尺度热核的区域形状统计方法,该方法可能会提高结构分析的统计效能。这种分析机制由图谱和热核理论驱动,以捕捉构建的四面体网格中的体积几何信息。为了捕捉深刻的体积变化,我们首先使用体积拉普拉斯 - 贝尔特拉米算子,通过计算四面体网格中的流线来确定两个边界表面之间的点对对应关系。其次,我们提出一种多尺度体积形态特征,通过点对之间的随机游走描述转移概率,这反映了内在的几何特征。第三,应用点分布模型来降低体积形态特征的维度并生成内部结构特征。基于多尺度和物理的内部结构特征可能比其他传统的体积形态分析方法具有更强的统计效能。为了验证我们的方法,我们应用支持向量机对合成数据和脑磁共振图像进行分类。在我们的实验中,在阿尔茨海默病患者和正常对照受试者的分类分析中,所提出的方法优于FreeSurfer厚度特征。

相似文献

1
Multi-scale Heat Kernel based Volumetric Morphology Signature.基于多尺度热核的体积形态特征
Med Image Comput Comput Assist Interv. 2015;9351:751-9. doi: 10.1007/978-3-319-24574-4_90.
9
Cortical thickness computation by solving tetrahedron-based harmonic field.通过求解基于四面体的调和场来计算皮质厚度。
Comput Biol Med. 2020 May;120:103727. doi: 10.1016/j.compbiomed.2020.103727. Epub 2020 Mar 25.

本文引用的文献

2
A new shape diffusion descriptor for brain classification.一种用于脑部分类的新型形状扩散描述符。
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):426-33. doi: 10.1007/978-3-642-23629-7_52.
3
The generation of tetrahedral mesh models for neuroanatomical MRI.神经解剖磁共振成像的四面体网格模型生成。
Neuroimage. 2011 Mar 1;55(1):153-64. doi: 10.1016/j.neuroimage.2010.11.013. Epub 2010 Nov 10.
5
The Alzheimer's disease neuroimaging initiative.阿尔茨海默病神经影像学计划。
Neuroimaging Clin N Am. 2005 Nov;15(4):869-77, xi-xii. doi: 10.1016/j.nic.2005.09.008.
7
Three-dimensional mapping of cortical thickness using Laplace's equation.使用拉普拉斯方程进行皮质厚度的三维映射。
Hum Brain Mapp. 2000 Sep;11(1):12-32. doi: 10.1002/1097-0193(200009)11:1<12::aid-hbm20>3.0.co;2-k.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验