Suppr超能文献

磁性氧化铁-氧化石墨烯和磁性氧化铁还原氧化石墨烯复合材料对 As(III)和 As(V)去除的比较评价。

Comparative evaluation of magnetite-graphene oxide and magnetite-reduced graphene oxide composite for As(III) and As(V) removal.

机构信息

Yonsei University, Department of Environmental Engineering, Maeji-ri, Heungeop-myeon, Gangwon-do, Wonju-si 220-710, Republic of Korea.

Electronic Materials and Device Research Center, Korea Electronics Technology Institute, 25 Saenari-ro, Bundang-gu, Gyeonggi-do, Seongnam-si 463-816, Republic of Korea; School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746, South Korea.

出版信息

J Hazard Mater. 2016 Mar 5;304:196-204. doi: 10.1016/j.jhazmat.2015.10.053. Epub 2015 Oct 30.

Abstract

Arsenic removal using Fe3O4-graphene oxide composite (M-GO) and Fe3O4-reduced graphene oxide composite (M-rGO) was investigated. The M-GO was more effective to adsorb both As(III) and As(V) than M-rGO, because the more functional groups existing on the M-GO could lead to synthesize more Fe3O4 with M-GO. As(III) was more favorable to be adsorbed than As(V) onto both M-GO and M-rGO. According to the effect of pH on arsenic removal, the electrostatic interaction between the positively charged surface of Fe3O4-graphene based adsorbents and anionic As(V) species was a major factor to adsorb As(V). The adsorption mechanism of As(III), on the other hand, was strongly affected by a surface complexation, rather than electrostatic interactions. Consequently, in terms of the process energy consumption, energy saving could be achieved via omitting the reduction process to fabricate M-rGO from M-GO and the pre-oxidation process to convert As(III) to As(V).

摘要

使用 Fe3O4-氧化石墨烯复合材料(M-GO)和 Fe3O4-还原氧化石墨烯复合材料(M-rGO)去除砷的研究。与 M-rGO 相比,M-GO 更有效地吸附 As(III)和 As(V),因为 M-GO 上存在更多的官能团,从而可以与 M-GO 合成更多的 Fe3O4。与 M-rGO 相比,As(III)比 As(V)更容易被吸附。根据 pH 值对砷去除的影响,Fe3O4-基于石墨烯的吸附剂表面带正电荷与阴离子 As(V)物种之间的静电相互作用是吸附 As(V)的主要因素。另一方面,As(III)的吸附机理主要受表面络合作用的影响,而不是静电相互作用。因此,就工艺能耗而言,可以通过省略还原过程(从 M-GO 制备 M-rGO)和预氧化过程(将 As(III)转化为 As(V))来节省能量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验