González-Rubio Guillermo, González-Izquierdo Jesús, Bañares Luis, Tardajos Gloria, Rivera Antonio, Altantzis Thomas, Bals Sara, Peña-Rodríguez Ovidio, Guerrero-Martínez Andrés, Liz-Marzán Luis M
Departamento de Química Física I, Universidad Complutense de Madrid , Avda. Complutense s/n, 28040, Madrid, Spain.
BioNanoPlasmonics Laboratory, CIC biomaGUNE , Paseo de Miramón 182, 20009 Donostia - San Sebastián, Spain.
Nano Lett. 2015 Dec 9;15(12):8282-8. doi: 10.1021/acs.nanolett.5b03844. Epub 2015 Nov 13.
Directed assembly of gold nanorods through the use of dithiolated molecular linkers is one of the most efficient methodologies for the morphologically controlled tip-to-tip assembly of this type of anisotropic nanocrystals. However, in a direct analogy to molecular polymerization synthesis, this process is characterized by difficulties in chain-growth control over nanoparticle oligomers. In particular, it is nearly impossible to favor the formation of one type of oligomer, making the methodology hard to use for actual applications in nanoplasmonics. We propose here a light-controlled synthetic procedure that allows obtaining selected plasmonic oligomers in high yield and with reaction times in the scale of minutes by irradiation with low fluence near-infrared (NIR) femtosecond laser pulses. Selective inhibition of the formation of gold nanorod n-mers (trimers) with a longitudinal localized surface plasmon in resonance with a 800 nm Ti:sapphire laser, allowed efficient trapping of the (n - 1)-mers (dimers) by hot spot mediated photothermal decomposition of the interparticle molecular linkers. Laser irradiation at higher energies produced near-field enhancement at the interparticle gaps, which is large enough to melt gold nanorod tips, offering a new pathway toward tip-to-tip welding of gold nanorod oligomers with a plasmonic response at the NIR. Thorough optical and electron microscopy characterization indicates that plasmonic oligomers can be selectively trapped and welded, which has been analyzed in terms of a model that predicts with reasonable accuracy the relative concentrations of the main plasmonic species.
通过使用二硫醇化分子连接体来定向组装金纳米棒,是对这类各向异性纳米晶体进行形态控制的头对头组装的最有效方法之一。然而,与分子聚合合成直接类似的是,这个过程的特点是在纳米颗粒低聚物的链增长控制方面存在困难。特别是,几乎不可能促进某一种低聚物的形成,这使得该方法难以用于纳米等离子体学的实际应用。我们在此提出一种光控合成程序,通过用低通量近红外(NIR)飞秒激光脉冲照射,能够以高产率且在几分钟的反应时间内获得选定的等离子体低聚物。用与800nm钛宝石激光共振的纵向局域表面等离子体选择性抑制金纳米棒n聚体(三聚体)的形成,通过颗粒间分子连接体的热点介导光热分解,能够有效地捕获(n - 1)聚体(二聚体)。更高能量的激光照射在颗粒间间隙处产生近场增强,其强度足以熔化金纳米棒的尖端,为具有近红外等离子体响应的金纳米棒低聚物的头对头焊接提供了一条新途径。全面的光学和电子显微镜表征表明,等离子体低聚物能够被选择性地捕获和焊接,这已根据一个能合理准确预测主要等离子体物种相对浓度的模型进行了分析。