Suppr超能文献

飞秒激光控制的金纳米棒端对端组装与焊接

Femtosecond Laser-Controlled Tip-to-Tip Assembly and Welding of Gold Nanorods.

作者信息

González-Rubio Guillermo, González-Izquierdo Jesús, Bañares Luis, Tardajos Gloria, Rivera Antonio, Altantzis Thomas, Bals Sara, Peña-Rodríguez Ovidio, Guerrero-Martínez Andrés, Liz-Marzán Luis M

机构信息

Departamento de Química Física I, Universidad Complutense de Madrid , Avda. Complutense s/n, 28040, Madrid, Spain.

BioNanoPlasmonics Laboratory, CIC biomaGUNE , Paseo de Miramón 182, 20009 Donostia - San Sebastián, Spain.

出版信息

Nano Lett. 2015 Dec 9;15(12):8282-8. doi: 10.1021/acs.nanolett.5b03844. Epub 2015 Nov 13.

Abstract

Directed assembly of gold nanorods through the use of dithiolated molecular linkers is one of the most efficient methodologies for the morphologically controlled tip-to-tip assembly of this type of anisotropic nanocrystals. However, in a direct analogy to molecular polymerization synthesis, this process is characterized by difficulties in chain-growth control over nanoparticle oligomers. In particular, it is nearly impossible to favor the formation of one type of oligomer, making the methodology hard to use for actual applications in nanoplasmonics. We propose here a light-controlled synthetic procedure that allows obtaining selected plasmonic oligomers in high yield and with reaction times in the scale of minutes by irradiation with low fluence near-infrared (NIR) femtosecond laser pulses. Selective inhibition of the formation of gold nanorod n-mers (trimers) with a longitudinal localized surface plasmon in resonance with a 800 nm Ti:sapphire laser, allowed efficient trapping of the (n - 1)-mers (dimers) by hot spot mediated photothermal decomposition of the interparticle molecular linkers. Laser irradiation at higher energies produced near-field enhancement at the interparticle gaps, which is large enough to melt gold nanorod tips, offering a new pathway toward tip-to-tip welding of gold nanorod oligomers with a plasmonic response at the NIR. Thorough optical and electron microscopy characterization indicates that plasmonic oligomers can be selectively trapped and welded, which has been analyzed in terms of a model that predicts with reasonable accuracy the relative concentrations of the main plasmonic species.

摘要

通过使用二硫醇化分子连接体来定向组装金纳米棒,是对这类各向异性纳米晶体进行形态控制的头对头组装的最有效方法之一。然而,与分子聚合合成直接类似的是,这个过程的特点是在纳米颗粒低聚物的链增长控制方面存在困难。特别是,几乎不可能促进某一种低聚物的形成,这使得该方法难以用于纳米等离子体学的实际应用。我们在此提出一种光控合成程序,通过用低通量近红外(NIR)飞秒激光脉冲照射,能够以高产率且在几分钟的反应时间内获得选定的等离子体低聚物。用与800nm钛宝石激光共振的纵向局域表面等离子体选择性抑制金纳米棒n聚体(三聚体)的形成,通过颗粒间分子连接体的热点介导光热分解,能够有效地捕获(n - 1)聚体(二聚体)。更高能量的激光照射在颗粒间间隙处产生近场增强,其强度足以熔化金纳米棒的尖端,为具有近红外等离子体响应的金纳米棒低聚物的头对头焊接提供了一条新途径。全面的光学和电子显微镜表征表明,等离子体低聚物能够被选择性地捕获和焊接,这已根据一个能合理准确预测主要等离子体物种相对浓度的模型进行了分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5ee/4898861/19f8a58db17d/nl-2015-03844e_0001.jpg

相似文献

1
Femtosecond Laser-Controlled Tip-to-Tip Assembly and Welding of Gold Nanorods.
Nano Lett. 2015 Dec 9;15(12):8282-8. doi: 10.1021/acs.nanolett.5b03844. Epub 2015 Nov 13.
2
Intracellular pH-Induced Tip-to-Tip Assembly of Gold Nanorods for Enhanced Plasmonic Photothermal Therapy.
ACS Omega. 2016 Sep 30;1(3):388-395. doi: 10.1021/acsomega.6b00184. Epub 2016 Sep 16.
3
3D Characterization and Plasmon Mapping of Gold Nanorods Welded by Femtosecond Laser Irradiation.
ACS Nano. 2020 Oct 27;14(10):12558-12570. doi: 10.1021/acsnano.0c02610. Epub 2020 Aug 19.
4
Ultrafast Laser-Induced Formation of Hollow Gold Nanorods and Their Optical Properties.
ACS Omega. 2022 Oct 21;7(43):39287-39293. doi: 10.1021/acsomega.2c05436. eCollection 2022 Nov 1.
6
Probing Photothermal Effects on Optically Trapped Gold Nanorods by Simultaneous Plasmon Spectroscopy and Brownian Dynamics Analysis.
ACS Nano. 2017 Oct 24;11(10):10053-10061. doi: 10.1021/acsnano.7b04302. Epub 2017 Sep 20.
7
Plasmon-Enhanced Optical Chirality through Hotspot Formation in Surfactant-Directed Self-Assembly of Gold Nanorods.
ACS Nano. 2020 Dec 22;14(12):16712-16722. doi: 10.1021/acsnano.0c03997. Epub 2020 Nov 24.
10
Angle-resolved plasmonic photocapacitance of gold nanorod dimers.
Nanoscale Adv. 2023 Feb 28;5(7):1943-1955. doi: 10.1039/d3na00061c. eCollection 2023 Mar 28.

引用本文的文献

1
Femtosecond Laser Single-Spot Welding of Sapphire/Invar Alloy.
Materials (Basel). 2025 Aug 15;18(16):3839. doi: 10.3390/ma18163839.
2
From Multi- to Single-Hollow Trimetallic Nanocrystals by Ultrafast Heating.
Chem Mater. 2023 Nov 6;35(22):9603-9612. doi: 10.1021/acs.chemmater.3c01698. eCollection 2023 Nov 28.
3
Three-dimensional building of anisotropic gold nanoparticles under confinement in submicron capsules.
Nanoscale Adv. 2023 Sep 6;5(21):5780-5785. doi: 10.1039/d3na00683b. eCollection 2023 Oct 24.
4
Metallic On-Chip Light Concentrators Fabricated by In Situ Plasmonic Etching Technique.
Nanomaterials (Basel). 2022 Nov 25;12(23):4195. doi: 10.3390/nano12234195.
5
Surface-Plasmon-Assisted Growth, Reshaping and Transformation of Nanomaterials.
Nanomaterials (Basel). 2022 Apr 12;12(8):1329. doi: 10.3390/nano12081329.
6
The fragmentation mechanism of gold nanoparticles in water under femtosecond laser irradiation.
Nanoscale Adv. 2021 Aug 2;3(18):5277-5283. doi: 10.1039/d1na00406a. eCollection 2021 Sep 14.
7
Plasmon-Enhanced Photothermal and Optomechanical Deformations of a Gold Nanoparticle.
Nanomaterials (Basel). 2020 Sep 20;10(9):1881. doi: 10.3390/nano10091881.
8
Effects of Strain and Kinetics on the HO-Assisted Reconstruction of Ag-Au-Ag Nanorods.
Langmuir. 2020 Aug 25;36(33):9770-9779. doi: 10.1021/acs.langmuir.0c01230. Epub 2020 Aug 11.
9
A Novel Fast Photothermal Therapy Using Hot Spots of Gold Nanorods for Malignant Melanoma Cells.
Nanomaterials (Basel). 2018 Oct 28;8(11):880. doi: 10.3390/nano8110880.

本文引用的文献

1
Angle-Resolved Plasmonic Properties of Single Gold Nanorod Dimers.
Nanomicro Lett. 2014;6(4):372-380. doi: 10.1007/s40820-014-0011-7. Epub 2014 Sep 26.
2
Alternating Plasmonic Nanoparticle Heterochains Made by Polymerase Chain Reaction and Their Optical Properties.
J Phys Chem Lett. 2013 Feb 21;4(4):641-7. doi: 10.1021/jz400045s. Epub 2013 Feb 7.
3
Plasmon-induced hot carrier science and technology.
Nat Nanotechnol. 2015 Jan;10(1):25-34. doi: 10.1038/nnano.2014.311.
4
Threading plasmonic nanoparticle strings with light.
Nat Commun. 2014 Jul 28;5:4568. doi: 10.1038/ncomms5568.
5
The relevance of light in the formation of colloidal metal nanoparticles.
Chem Soc Rev. 2014 Apr 7;43(7):2089-97. doi: 10.1039/c3cs60256g. Epub 2013 Sep 23.
6
Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au.
Nano Lett. 2013 Jan 9;13(1):240-7. doi: 10.1021/nl303940z. Epub 2012 Dec 5.
7
Hydrophobic interactions modulate self-assembly of nanoparticles.
ACS Nano. 2012 Dec 21;6(12):11059-65. doi: 10.1021/nn3047605. Epub 2012 Dec 5.
8
Controlling the degree of polymerization, bond lengths, and bond angles of plasmonic polymers.
J Am Chem Soc. 2012 Nov 14;134(45):18853-9. doi: 10.1021/ja309475e. Epub 2012 Nov 1.
9
Molecular thinking for nanoplasmonic design.
ACS Nano. 2012 May 22;6(5):3655-62. doi: 10.1021/nn301390s. Epub 2012 Apr 24.
10
Manipulation of collective optical activity in one-dimensional plasmonic assembly.
ACS Nano. 2012 Mar 27;6(3):2326-32. doi: 10.1021/nn2044802. Epub 2012 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验