1] Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA [2] Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA.
Laboratory for Nanophotonics, Department of Electrical and Computer Engineering, Department of Physics and Astronomy, and Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, USA.
Nat Nanotechnol. 2015 Jan;10(1):25-34. doi: 10.1038/nnano.2014.311.
The discovery of the photoelectric effect by Heinrich Hertz in 1887 set the foundation for over 125 years of hot carrier science and technology. In the early 1900s it played a critical role in the development of quantum mechanics, but even today the unique properties of these energetic, hot carriers offer new and exciting opportunities for fundamental research and applications. Measurement of the kinetic energy and momentum of photoejected hot electrons can provide valuable information on the electronic structure of materials. The heat generated by hot carriers can be harvested to drive a wide range of physical and chemical processes. Their kinetic energy can be used to harvest solar energy or create sensitive photodetectors and spectrometers. Photoejected charges can also be used to electrically dope two-dimensional materials. Plasmon excitations in metallic nanostructures can be engineered to enhance and provide valuable control over the emission of hot carriers. This Review discusses recent advances in the understanding and application of plasmon-induced hot carrier generation and highlights some of the exciting new directions for the field.
1887 年 Heinrich Hertz 发现光电效应,为 125 多年的热载流子科学和技术奠定了基础。在 20 世纪初,它在量子力学的发展中发挥了关键作用,但即使在今天,这些高能、热载流子的独特性质也为基础研究和应用提供了新的令人兴奋的机会。测量光电子发射的热电子的动能和动量可以提供有关材料电子结构的有价值的信息。热载流子产生的热量可以用来驱动广泛的物理和化学过程。它们的动能可用于收集太阳能或创建灵敏的光电探测器和分光计。光电子发射的电荷也可用于电掺杂二维材料。金属纳米结构中的等离子体激元激发可以被设计用来增强和提供对热载流子发射的宝贵控制。本综述讨论了对等离子体诱导热载流子产生的理解和应用的最新进展,并强调了该领域令人兴奋的一些新方向。