Yale University, New Haven, Connecticut 06520-8109, USA.
Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom.
Phys Rev Lett. 2015 Oct 2;115(14):148501. doi: 10.1103/PhysRevLett.115.148501.
We use concepts from statistical physics to transform the original evolution equation for the sea ice thickness distribution g(h) from Thorndike et al. into a Fokker-Planck-like conservation law. The steady solution is g(h)=N(q)h(q)e(-h/H), where q and H are expressible in terms of moments over the transition probabilities between thickness categories. The solution exhibits the functional form used in observational fits and shows that for h≪1, g(h) is controlled by both thermodynamics and mechanics, whereas for h≫1 only mechanics controls g(h). Finally, we derive the underlying Langevin equation governing the dynamics of the ice thickness h, from which we predict the observed g(h). The genericity of our approach provides a framework for studying the geophysical-scale structure of the ice pack using methods of broad relevance in statistical mechanics.
我们使用统计物理的概念,将 Thorndike 等人提出的海冰厚度分布 g(h)的原始演化方程转换为类似于福克-普朗克的守恒定律。稳态解为 g(h)=N(q)h(q)e(-h/H),其中 q 和 H 可以用厚度类别之间的跃迁概率的矩来表示。该解表现出在观测拟合中使用的函数形式,并表明对于 h≪1,g(h)同时受到热力学和力学的控制,而对于 h≫1,只有力学控制 g(h)。最后,我们从控制冰厚度 h 动力学的基本朗之万方程出发,从该方程预测了观测到的 g(h)。我们方法的通用性为使用统计力学中广泛相关的方法研究冰盖的地球物理尺度结构提供了一个框架。