Toppaladoddi Srikanth, Wettlaufer J S
1Yale University, New Haven, CT USA.
2Mathematical Institute, University of Oxford, Oxford, UK.
J Stat Phys. 2017;167(3):683-702. doi: 10.1007/s10955-016-1704-8. Epub 2017 Jan 4.
We study the seasonal changes in the thickness distribution of Arctic sea ice, (), under climate forcing. Our analytical and numerical approach is based on a Fokker-Planck equation for () (Toppaladoddi and Wettlaufer in Phys Rev Lett 115(14):148501, 2015), in which the thermodynamic growth rates are determined using observed climatology. In particular, the Fokker-Planck equation is coupled to the observationally consistent thermodynamic model of Eisenman and Wettlaufer (Proc Natl Acad Sci USA 106:28-32, 2009). We find that due to the combined effects of thermodynamics and mechanics, () spreads during winter and contracts during summer. This behavior is in agreement with recent satellite observations from CryoSat-2 (Kwok and Cunningham in Philos Trans R Soc A 373(2045):20140157, 2015). Because () is a probability density function, we quantify all of the key moments (e.g., mean thickness, fraction of thin/thick ice, mean albedo, relaxation time scales) as greenhouse-gas radiative forcing, , increases. The mean ice thickness decays exponentially with , but than do solely thermodynamic models. This exhibits the crucial role that ice mechanics plays in maintaining the ice cover, by redistributing thin ice to thick ice-far more rapidly than can thermal growth alone.
我们研究了在气候强迫下北极海冰厚度分布的季节性变化,()。我们的分析和数值方法基于一个关于()的福克 - 普朗克方程(托帕拉多迪和韦特劳弗,《物理评论快报》115(14):148501,2015年),其中热力学生长速率是使用观测到的气候学数据确定的。特别地,福克 - 普朗克方程与艾森曼和韦特劳弗观测一致的热力学模型(《美国国家科学院院刊》106:28 - 32,2009年)相耦合。我们发现,由于热力学和力学的综合作用,()在冬季扩展而在夏季收缩。这种行为与来自CryoSat - 2的近期卫星观测结果一致(郭和坎宁安,《皇家学会哲学学报A》373(2045):20140157,2015年)。因为()是一个概率密度函数,我们量化了所有关键矩(例如,平均厚度、薄/厚冰的比例、平均反照率、弛豫时间尺度)随温室气体辐射强迫,,增加的变化情况。平均冰厚度随呈指数衰减,但比仅由热力学模型预测的衰减速度()。这展示了冰力学在维持冰盖方面所起的关键作用,通过将薄冰重新分布到厚冰中,其速度比仅靠热生长要快得多。