Suppr超能文献

三个残基构成了TTP蛋白家族中折叠和RNA去稳定活性的进化开关。

Three Residues Make an Evolutionary Switch for Folding and RNA-Destabilizing Activity in the TTP Family of Proteins.

作者信息

Deveau Laura M, Massi Francesca

机构信息

Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School , 364 Plantation Street, Worcester, Massachusetts 01605, United States.

出版信息

ACS Chem Biol. 2016 Feb 19;11(2):435-43. doi: 10.1021/acschembio.5b00639. Epub 2015 Dec 14.

Abstract

Tristetraprolin (TTP) binds to mRNA transcripts to promote their degradation. The TTP protein family in humans includes two other proteins, TIS11b and TIS11d. All three proteins contain a highly homologous RNA binding domain (RBD) that consists of two CCCH zinc fingers (ZFs). Both ZFs are folded in the absence of RNA in TIS11d and TIS11b. In TTP, however, only ZF1 adopts a stable fold. The focus of this study is to understand the origin and biological significance of the structural differences of the RBD. We identified three residues that affect the affinity for the structural Zn(2+) and determine the folding of ZF2 in the absence of RNA. We observed that the mRNA destabilizing activity of TTP was increased when the partially disordered RBD of TTP was replaced with the fully structured RBD of TIS11d, indicating that differences in the folded state of the RBD affect the activity of the proteins in the cell.

摘要

锌指蛋白Tristetraprolin(TTP)与信使核糖核酸(mRNA)转录本结合以促进其降解。人类的TTP蛋白家族还包括另外两种蛋白,即TIS11b和TIS11d。这三种蛋白均含有一个高度同源的RNA结合结构域(RBD),该结构域由两个CCCH型锌指(ZF)组成。在TIS11d和TIS11b中,两个锌指在没有RNA的情况下都会折叠。然而,在TTP中,只有锌指1(ZF1)会形成稳定的折叠结构。本研究的重点是了解RBD结构差异的起源及其生物学意义。我们鉴定出了三个影响对结构锌离子(Zn2+)亲和力的残基,并确定了在没有RNA的情况下ZF2的折叠情况。我们观察到,当TTP部分无序的RBD被TIS11d完全结构化的RBD取代时,TTP的mRNA去稳定活性增强,这表明RBD折叠状态的差异会影响细胞中蛋白质的活性。

相似文献

1
Three Residues Make an Evolutionary Switch for Folding and RNA-Destabilizing Activity in the TTP Family of Proteins.
ACS Chem Biol. 2016 Feb 19;11(2):435-43. doi: 10.1021/acschembio.5b00639. Epub 2015 Dec 14.
2
Structural Basis of the Disorder in the Tandem Zinc Finger Domain of the RNA-Binding Protein Tristetraprolin.
J Chem Theory Comput. 2016 Oct 11;12(10):4717-4725. doi: 10.1021/acs.jctc.6b00150. Epub 2016 Sep 9.
4
Direct binding of specific AUF1 isoforms to tandem zinc finger domains of tristetraprolin (TTP) family proteins.
J Biol Chem. 2012 Feb 17;287(8):5459-71. doi: 10.1074/jbc.M111.312652. Epub 2011 Dec 27.
5
Drosophila eyes absent is a novel mRNA target of the tristetraprolin (TTP) protein DTIS11.
Int J Biol Sci. 2012;8(5):606-19. doi: 10.7150/ijbs.3782. Epub 2012 Apr 20.
7
Cu(I) Disrupts the Structure and Function of the Nonclassical Zinc Finger Protein Tristetraprolin (TTP).
Inorg Chem. 2017 Jun 19;56(12):6838-6848. doi: 10.1021/acs.inorgchem.7b00125. Epub 2017 May 30.
8
Members of the tristetraprolin family of tandem CCCH zinc finger proteins exhibit CRM1-dependent nucleocytoplasmic shuttling.
J Biol Chem. 2002 Mar 29;277(13):11606-13. doi: 10.1074/jbc.M111457200. Epub 2002 Jan 16.
9
Mutational and structural analysis of the tandem zinc finger domain of tristetraprolin.
J Biol Chem. 2014 Jan 3;289(1):565-80. doi: 10.1074/jbc.M113.466326. Epub 2013 Nov 19.

引用本文的文献

1
Zinc and RNA Binding Is Linked to the Conformational Flexibility of ZRANB2: A CCCC-Type Zinc Finger Protein.
Biochemistry. 2025 Jan 7;64(1):156-169. doi: 10.1021/acs.biochem.4c00470. Epub 2024 Dec 16.
2
Structure and Dynamics of the CCCH-Type Tandem Zinc Finger Domain of POS-1 and Implications for RNA Binding Specificity.
Biochemistry. 2024 Oct 15;63(20):2632-2647. doi: 10.1021/acs.biochem.4c00259. Epub 2024 Sep 25.
3
Targeting Zinc Finger Proteins with Exogenous Metals and Molecules: Lessons learned from Tristetraprolin, a CCCH type Zinc Finger.
Eur J Inorg Chem. 2021 Oct 7;2021(37):3795-3805. doi: 10.1002/ejic.202100402. Epub 2021 Jul 21.
4
A Disorder-to-Order Transition Mediates RNA Binding of the Caenorhabditis elegans Protein MEX-5.
Biophys J. 2020 Apr 21;118(8):2001-2014. doi: 10.1016/j.bpj.2020.02.032. Epub 2020 Mar 19.
5
The tandem zinc finger RNA binding domain of members of the tristetraprolin protein family.
Wiley Interdiscip Rev RNA. 2019 Jul;10(4):e1531. doi: 10.1002/wrna.1531. Epub 2019 Mar 12.
7
Alternative splicing of U2AF1 reveals a shared repression mechanism for duplicated exons.
Nucleic Acids Res. 2017 Jan 9;45(1):417-434. doi: 10.1093/nar/gkw733. Epub 2016 Aug 26.
8
Structural Basis of the Disorder in the Tandem Zinc Finger Domain of the RNA-Binding Protein Tristetraprolin.
J Chem Theory Comput. 2016 Oct 11;12(10):4717-4725. doi: 10.1021/acs.jctc.6b00150. Epub 2016 Sep 9.

本文引用的文献

1
Probing the structural and dynamical effects of the charged residues of the TZF domain of TIS11d.
Biophys J. 2015 Mar 24;108(6):1503-1515. doi: 10.1016/j.bpj.2015.01.039.
3
Pfam: the protein families database.
Nucleic Acids Res. 2014 Jan;42(Database issue):D222-30. doi: 10.1093/nar/gkt1223. Epub 2013 Nov 27.
4
Mutational and structural analysis of the tandem zinc finger domain of tristetraprolin.
J Biol Chem. 2014 Jan 3;289(1):565-80. doi: 10.1074/jbc.M113.466326. Epub 2013 Nov 19.
5
Structural characterization of intrinsically disordered proteins by NMR spectroscopy.
Molecules. 2013 Sep 4;18(9):10802-28. doi: 10.3390/molecules180910802.
6
Structural basis for the recruitment of the human CCR4-NOT deadenylase complex by tristetraprolin.
Nat Struct Mol Biol. 2013 Jun;20(6):735-9. doi: 10.1038/nsmb.2572. Epub 2013 May 5.
7
Tristetraprolin (TTP): interactions with mRNA and proteins, and current thoughts on mechanisms of action.
Biochim Biophys Acta. 2013 Jun-Jul;1829(6-7):666-79. doi: 10.1016/j.bbagrm.2013.02.003. Epub 2013 Feb 18.
9
Not1 mediates recruitment of the deadenylase Caf1 to mRNAs targeted for degradation by tristetraprolin.
Nucleic Acids Res. 2011 May;39(10):4373-86. doi: 10.1093/nar/gkr011. Epub 2011 Jan 29.
10
PHAST and RPHAST: phylogenetic analysis with space/time models.
Brief Bioinform. 2011 Jan;12(1):41-51. doi: 10.1093/bib/bbq072. Epub 2010 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验