Suppr超能文献

通过对多属性专家意见进行建模来量化生态系统质量。

Quantifying ecosystem quality by modeling multi-attribute expert opinion.

作者信息

Sinclair Steve J, Griffioen Peter, Duncan David H, Millett-Riley Jessica E, Whitei Matthew D

出版信息

Ecol Appl. 2015 Sep;25(6):1463-77. doi: 10.1890/14-1485.1.

Abstract

The evaluation of ecosystem quality is inherently subjective, requiring decisions about which variables to notice or measure, and how these variables are integrated into a coherent evaluation. Despite the central role of human judgment, few evaluation methods address the subjectivity that is inherent in their design. There are, however, advantages to directly using opinion to create an expert system where the metric is constructed around opinion data. These advantages include stakeholder inclusion and the encouragement of a dialogue of data-driven criticism rather than subjective counter-opinion. We create an expert system to express the quality of a grassland ecosystem in Australia. We use an ensemble of bagged regression trees trained on calibrated expert preference data, to model the perceived quality of this grassland using a set of eight site variables as inputs. The model provides useful predictions of grassland quality, producing predictions similar to real expert evaluations of independent synthetic test sites not used to train the model. We apply the model to real grassland sites ranging from pristine to highly degraded, and confirm that our model orders the sites according to their degree of modification. We demonstrate that the use of too few experts produces relatively poor results, and show that for our problem the use of data from over twenty experts is appropriate. The scaling approach we used to calibrate between-expert data is shown to be an appropriate mechanism for aggregating the opinions of multiple experts. The resultant model will be useful in many contexts, and can be used by managers as a tool to evaluate real sites. It can also be integrated into ecological models of change as a means of evaluating predicted changes, for example, as a measure of utility when combined with cost estimates. The basic approach demonstrated here is applicable to any ecosystem, and we discuss the opportunities and limitations of its wider use.

摘要

生态系统质量的评估本质上是主观的,需要决定关注或测量哪些变量,以及如何将这些变量整合为一个连贯的评估。尽管人类判断起着核心作用,但很少有评估方法能解决其设计中固有的主观性问题。然而,直接利用意见创建一个围绕意见数据构建指标的专家系统是有优势的。这些优势包括纳入利益相关者,以及鼓励进行基于数据的批评对话而非主观的反对意见。我们创建了一个专家系统来表达澳大利亚草原生态系统的质量。我们使用在经过校准的专家偏好数据上训练的袋装回归树集成,以一组八个场地变量作为输入来模拟该草原的感知质量。该模型提供了对草原质量的有用预测,其预测结果与对未用于训练模型的独立合成测试场地的实际专家评估相似。我们将该模型应用于从原始到高度退化的真实草原场地,并确认我们的模型根据场地的改造程度对其进行了排序。我们证明使用的专家过少会产生相对较差的结果,并表明对于我们的问题,使用二十多位专家的数据是合适的。我们用于校准专家间数据的缩放方法被证明是汇总多位专家意见的合适机制。所得模型在许多情况下都将有用,管理者可将其用作评估实际场地的工具。它还可以作为评估预测变化的一种手段,例如与成本估算结合时作为效用度量,整合到生态变化模型中。这里展示的基本方法适用于任何生态系统,我们讨论了其更广泛应用的机会和局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验