Suppr超能文献

在多变环境中建立生物多样性基准模型。

Modeling biodiversity benchmarks in variable environments.

机构信息

School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia.

ARC Centre of Excellence for Environmental Decisions, The University of Melbourne, Parkville, VIC, 3010, Australia.

出版信息

Ecol Appl. 2019 Oct;29(7):e01970. doi: 10.1002/eap.1970. Epub 2019 Jul 30.

Abstract

Effective environmental assessment and management requires quantifiable biodiversity targets. Biodiversity benchmarks define these targets by focusing on specific biodiversity metrics, such as species richness. However, setting fixed targets can be challenging because many biodiversity metrics are highly variable, both spatially and temporally. We present a multivariate, hierarchical Bayesian method to estimate biodiversity benchmarks based on the species richness and cover of native terrestrial vegetation growth forms. This approach uses existing data to quantify the empirical distributions of species richness and cover within growth forms, and we use the upper quantiles of these distributions to estimate contemporary, "best-on-offer" biodiversity benchmarks. Importantly, we allow benchmarks to differ among vegetation types, regions, and seasons, and with changes in recent rainfall. We apply our method to data collected over 30 yr at ~35,000 floristic plots in southeastern Australia. Our estimated benchmarks were broadly consistent with existing expert-elicited benchmarks, available for a small subset of vegetation types. However, in comparison with expert-elicited benchmarks, our data-driven approach is transparent, repeatable, and updatable; accommodates important spatial and temporal variation; aligns modeled benchmarks directly with field data and the concept of best-on-offer benchmarks; and, where many benchmarks are required, is likely to be more efficient. Our approach is general and could be used broadly to estimate biodiversity targets from existing data in highly variable environments, which is especially relevant given rapid changes in global environmental conditions.

摘要

有效的环境评估和管理需要可量化的生物多样性目标。生物多样性基准通过关注特定的生物多样性指标来定义这些目标,例如物种丰富度。然而,设定固定的目标可能具有挑战性,因为许多生物多样性指标在空间和时间上都具有高度的可变性。我们提出了一种多变量、层次贝叶斯方法,根据本地陆地植被生长形式的物种丰富度和覆盖来估计生物多样性基准。该方法利用现有数据来量化生长形式内物种丰富度和覆盖的经验分布,并使用这些分布的上四分位数来估计当代的“最佳提供”生物多样性基准。重要的是,我们允许基准因植被类型、地区和季节以及最近降雨量的变化而有所不同。我们将我们的方法应用于在澳大利亚东南部约 35000 个植物区系样地收集的 30 多年的数据。我们估计的基准与现有专家启发式基准大致一致,这些基准仅适用于一小部分植被类型。然而,与专家启发式基准相比,我们的数据驱动方法是透明的、可重复的和可更新的;适应重要的空间和时间变化;将模型基准与野外数据和最佳提供基准的概念直接对齐;并且在需要许多基准的情况下,它可能更有效率。我们的方法具有通用性,可以广泛用于从高度可变环境中的现有数据中估计生物多样性目标,这在全球环境条件快速变化的情况下尤为重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f275/6852130/9c511bfbcbd7/EAP-29-na-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验