Yeakel Kiley L, Andersson Andreas J, Bates Nicholas R, Noyes Timothy J, Collins Andrew, Garley Rebecca
Scripps Institution of Oceanography, University of California, San Diego, La Jolla CA 92093-0244;
Scripps Institution of Oceanography, University of California, San Diego, La Jolla CA 92093-0244; Bermuda Institute of Ocean Sciences, St. George's GE01, Bermuda;
Proc Natl Acad Sci U S A. 2015 Nov 24;112(47):14512-7. doi: 10.1073/pnas.1507021112. Epub 2015 Nov 9.
Oceanic uptake of anthropogenic carbon dioxide (CO2) has acidified open-ocean surface waters by 0.1 pH units since preindustrial times. Despite unequivocal evidence of ocean acidification (OA) via open-ocean measurements for the past several decades, it has yet to be documented in near-shore and coral reef environments. A lack of long-term measurements from these environments restricts our understanding of the natural variability and controls of seawater CO2-carbonate chemistry and biogeochemistry, which is essential to make accurate predictions on the effects of future OA on coral reefs. Here, in a 5-y study of the Bermuda coral reef, we show evidence that variations in reef biogeochemical processes drive interannual changes in seawater pH and Ωaragonite that are partly controlled by offshore processes. Rapid acidification events driven by shifts toward increasing net calcification and net heterotrophy were observed during the summers of 2010 and 2011, with the frequency and extent of such events corresponding to increased offshore productivity. These events also coincided with a negative winter North Atlantic Oscillation (NAO) index, which historically has been associated with extensive offshore mixing and greater primary productivity at the Bermuda Atlantic Time-series Study (BATS) site. Our results reveal that coral reefs undergo natural interannual events of rapid acidification due to shifts in reef biogeochemical processes that may be linked to offshore productivity and ultimately controlled by larger-scale climatic and oceanographic processes.
自工业化前时代以来,海洋对人为二氧化碳(CO₂)的吸收已使开阔海洋表层水的pH值酸化了0.1个单位。尽管在过去几十年中通过开阔海洋测量有明确的海洋酸化(OA)证据,但在近岸和珊瑚礁环境中尚未有记录。这些环境缺乏长期测量数据,限制了我们对海水CO₂-碳酸盐化学和生物地球化学的自然变异性及控制因素的理解,而这对于准确预测未来海洋酸化对珊瑚礁的影响至关重要。在此,通过对百慕大珊瑚礁进行的一项为期5年的研究,我们证明了珊瑚礁生物地球化学过程的变化会驱动海水pH值和霰石Ω值的年际变化,这些变化部分受近海过程控制。在2010年和2011年夏季观察到了由净钙化和净异养增加导致的快速酸化事件,此类事件的频率和程度与近海生产力增加相对应。这些事件还与冬季北大西洋涛动(NAO)指数为负同时发生,从历史上看,这与百慕大大西洋时间序列研究(BATS)站点广泛的近海混合和更高的初级生产力有关。我们的结果表明,由于珊瑚礁生物地球化学过程的变化,珊瑚礁会经历自然的年际快速酸化事件,这些变化可能与近海生产力有关,并最终受更大尺度的气候和海洋学过程控制。