Bowker S L, Savu A, Lam N K, Johnson J A, Kaul P
School of Public Health, University of Alberta, Edmonton, Alberta.
Canadian VIGOUR Centre, University of Alberta, Edmonton, Alberta.
Diabet Med. 2017 Jan;34(1):51-55. doi: 10.1111/dme.13030. Epub 2015 Dec 24.
To examine, using administrative data, the validity of two algorithms for identifying gestational diabetes mellitus: 1) the current National Diabetes Surveillance System algorithm for excluding gestational diabetes cases and 2) gestational diabetes-specific ICD codes in the delivery-related hospitalization.
This was a retrospective study of all women, aged 18-54 years, residing in Alberta, Canada, with singleton deliveries between 1 April 1999 and 31 March 2010. We linked Alberta Perinatal Health Program data on all deliveries to administrative claims data from Alberta Health using the mother's personal health number. For both gestational diabetes algorithms, we calculated the sensitivity, specificity, positive predictive value, negative predictive value and agreement, using gestational diabetes identified in the Alberta Perinatal Health Program as the 'gold standard'.
Our study sample consisted of 411 390 deliveries for 273 152 women. The mean (sd) age was 29.1 (5.6) years and 82.3% of the women were white. Crude rates of gestational diabetes were 3.9% (16 215 cases), 1.3% (5189 cases) and 4.0% (16 440 cases) according to the Alberta Perinatal Health Program, National Diabetes Surveillance System and ICD code-based algorithms, respectively. Compared with the Alberta Perinatal Health Program database, the National Diabetes Surveillance System algorithm had a sensitivity of 25% and specificity of 100%, whereas the gestational diabetes-specific ICD code-based algorithm had a sensitivity of 86% and specificity of 99%.
The National Diabetes Surveillance System algorithm underestimates the number of gestational diabetes cases. A more valid mechanism to identify gestational diabetes prevalence using health administrative data is the use of gestational diabetes-specific ICD-9/10 codes in the delivery hospitalization.
利用行政数据检验两种用于识别妊娠期糖尿病的算法的有效性:1)当前国家糖尿病监测系统用于排除妊娠期糖尿病病例的算法;2)分娩相关住院病历中特定于妊娠期糖尿病的国际疾病分类(ICD)编码。
这是一项对1999年4月1日至2010年3月31日期间居住在加拿大艾伯塔省、单胎分娩的所有18至54岁女性进行的回顾性研究。我们使用母亲的个人健康号码,将艾伯塔省围产期健康项目中所有分娩的数据与艾伯塔省卫生部门的行政索赔数据相链接。对于两种妊娠期糖尿病算法,我们以艾伯塔省围产期健康项目中确定的妊娠期糖尿病为“金标准”,计算其敏感性、特异性、阳性预测值、阴性预测值和一致性。
我们的研究样本包括273152名女性的411390次分娩。平均(标准差)年龄为29.1(5.6)岁,82.3%的女性为白人。根据艾伯塔省围产期健康项目、国家糖尿病监测系统和基于ICD编码的算法,妊娠期糖尿病的粗发病率分别为3.9%(16215例)、1.3%(5189例)和4.0%(16440例)。与艾伯塔省围产期健康项目数据库相比,国家糖尿病监测系统算法的敏感性为25%,特异性为100%,而基于特定于妊娠期糖尿病的ICD编码算法的敏感性为86%,特异性为99%。
国家糖尿病监测系统算法低估了妊娠期糖尿病病例数。利用卫生行政数据识别妊娠期糖尿病患病率的一种更有效的机制是在分娩住院病历中使用特定于妊娠期糖尿病的ICD - 9/10编码。