Tălu Stefan, Vlăduţiu Cristina, Lupaşcu Carmen A
Discipline of Descriptive Geometry and Engineering Graphics, Department of Automotive Engineering and Transportation, Faculty of Mechanical Engineering, Technical University of Cluj-Napoca, Cluj-Napoca 400641, Cluj, Romania.
Discipline of Ophthalmology, Department of Surgical Specialties and Medical Imaging, Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca 400012, Cluj, Romania.
Int J Ophthalmol. 2015 Oct 18;8(5):996-1002. doi: 10.3980/j.issn.2222-3959.2015.05.26. eCollection 2015.
To characterize the human retinal vessel arborisation in normal and amblyopic eyes using multifractal geometry and lacunarity parameters.
Multifractal analysis using a box counting algorithm was carried out for a set of 12 segmented and skeletonized human retinal images, corresponding to both normal (6 images) and amblyopia states of the retina (6 images).
It was found that the microvascular geometry of the human retina network represents geometrical multifractals, characterized through subsets of regions having different scaling properties that are not evident in the fractal analysis. Multifractal analysis of the amblyopia images (segmented and skeletonized versions) show a higher average of the generalized dimensions (Dq ) for q=0, 1, 2 indicating a higher degree of the tree-dimensional complexity associated with the human retinal microvasculature network whereas images of healthy subjects show a lower value of generalized dimensions indicating normal complexity of biostructure. On the other hand, the lacunarity analysis of the amblyopia images (segmented and skeletonized versions) show a lower average of the lacunarity parameter Λ than the corresponding values for normal images (segmented and skeletonized versions).
The multifractal and lacunarity analysis may be used as a non-invasive predictive complementary tool to distinguish amblyopic subjects from healthy subjects and hence this technique could be used for an early diagnosis of patients with amblyopia.
使用多重分形几何和孔隙率参数来表征正常眼和弱视眼中的人类视网膜血管分支。
对一组12张分割并骨架化的人类视网膜图像进行盒计数算法的多重分形分析,这些图像分别对应视网膜的正常状态(6张图像)和弱视状态(6张图像)。
发现人类视网膜网络的微血管几何结构呈现几何多重分形,其特征在于具有不同缩放特性的区域子集,这在分形分析中并不明显。对弱视图像(分割和骨架化版本)的多重分形分析显示,对于q = 0、1、2,广义维数(Dq)的平均值较高,表明与人类视网膜微血管网络相关的三维复杂性程度较高,而健康受试者的图像显示广义维数的值较低,表明生物结构具有正常的复杂性。另一方面,对弱视图像(分割和骨架化版本)的孔隙率分析显示,孔隙率参数Λ的平均值低于正常图像(分割和骨架化版本)的相应值。
多重分形和孔隙率分析可作为一种非侵入性的预测性补充工具,用于区分弱视受试者和健康受试者,因此该技术可用于弱视患者的早期诊断。