Suppr超能文献

尝试拼凑拼图:年龄和表现水平调节左前额叶喙部皮质对任务负荷增加的神经反应。

Trying to Put the Puzzle Together: Age and Performance Level Modulate the Neural Response to Increasing Task Load within Left Rostral Prefrontal Cortex.

作者信息

Bauer Eva, Sammer Gebhard, Toepper Max

机构信息

Cognitive Neuroscience at the Centre for Psychiatry, University of Giessen, Am Steg 24, 35385 Giessen, Germany.

Cognitive Neuroscience at the Centre for Psychiatry, University of Giessen, Am Steg 24, 35385 Giessen, Germany ; Department of Psychology, University of Giessen, Otto-Behaghel-Straße 10, 35394 Giessen, Germany ; Bender Institute of Neuroimaging, University of Giessen, Otto-Behaghel-Straße 10H, 35394 Giessen, Germany.

出版信息

Biomed Res Int. 2015;2015:415458. doi: 10.1155/2015/415458. Epub 2015 Oct 8.

Abstract

Age-related working memory decline is associated with functional cerebral changes within prefrontal cortex (PFC). Kind and meaning of these changes are heavily discussed since they depend on performance level and task load. Hence, we investigated the effects of age, performance level, and load on spatial working memory retrieval-related brain activation in different subregions of the PFC. 19 younger (Y) and 21 older (O) adults who were further subdivided into high performers (HP) and low performers (LP) performed a modified version of the Corsi Block-Tapping test during fMRI. Brain data was analyzed by a 4 (groups: YHP, OHP, YLP, and OLP) × 3 (load levels: loads 4, 5, and 6) ANOVA. Results revealed significant group × load interaction effects within rostral dorsolateral and ventrolateral PFC. YHP showed a flexible neural upregulation with increasing load, whereas YLP reached a resource ceiling at a moderate load level. OHP showed a similar (though less intense) pattern as YHP and may have compensated age-effects at high task load. OLP showed neural inefficiency at low and no upregulation at higher load. Our findings highlight the relevance of age and performance level for load-dependent activation within rostral PFC. Results are discussed in the context of the compensation-related utilization of neural circuits hypothesis (CRUNCH) and functional PFC organization.

摘要

与年龄相关的工作记忆衰退与前额叶皮层(PFC)内的大脑功能变化有关。由于这些变化的性质和意义取决于表现水平和任务负荷,因此一直备受讨论。因此,我们研究了年龄、表现水平和负荷对PFC不同亚区域中与空间工作记忆检索相关的大脑激活的影响。19名年轻(Y)成年人和21名年长(O)成年人,他们又被进一步细分为高表现者(HP)和低表现者(LP),在功能磁共振成像(fMRI)期间进行了改良版的Corsi方块敲击测试。通过4(组:YHP、OHP、YLP和OLP)×3(负荷水平:负荷4、5和6)方差分析对脑数据进行分析。结果显示,在腹侧背外侧和腹外侧PFC内存在显著的组×负荷交互作用。YHP随着负荷增加表现出灵活的神经上调,而YLP在中等负荷水平时达到资源上限。OHP表现出与YHP相似(尽管程度较轻)的模式,并且可能在高任务负荷时补偿了年龄效应。OLP在低负荷时表现出神经效率低下,在高负荷时没有上调。我们的研究结果突出了年龄和表现水平对腹侧PFC内负荷依赖性激活的相关性。在神经回路假说(CRUNCH)和功能性PFC组织的背景下对结果进行了讨论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90dc/4617870/b517ea252082/BMRI2015-415458.001.jpg

相似文献

2
The impact of age on prefrontal cortex integrity during spatial working memory retrieval.
Neuropsychologia. 2014 Jul;59:157-68. doi: 10.1016/j.neuropsychologia.2014.04.020. Epub 2014 May 10.
3
Performance Level and Cortical Atrophy Modulate the Neural Response to Increasing Working Memory Load in Younger and Older Adults.
Front Aging Neurosci. 2018 Sep 11;10:265. doi: 10.3389/fnagi.2018.00265. eCollection 2018.
4
The impact of age on load-related dorsolateral prefrontal cortex activation.
Front Aging Neurosci. 2014 Feb 5;6:9. doi: 10.3389/fnagi.2014.00009. eCollection 2014.
5
Neurophysiological correlates of age-related changes in working memory capacity.
Neurosci Lett. 2006 Jan 9;392(1-2):32-7. doi: 10.1016/j.neulet.2005.09.025. Epub 2005 Oct 5.
6
Association between prefrontal activity and volume change in prefrontal and medial temporal lobes in aging and dementia: a review.
Ageing Res Rev. 2013 Mar;12(2):479-89. doi: 10.1016/j.arr.2012.11.001. Epub 2012 Nov 24.
7
Age differences in prefontal recruitment during verbal working memory maintenance depend on memory load.
Cortex. 2010 Apr;46(4):462-73. doi: 10.1016/j.cortex.2009.11.009. Epub 2009 Dec 22.
8
Isolating the neural mechanisms of age-related changes in human working memory.
Nat Neurosci. 2000 May;3(5):509-15. doi: 10.1038/74889.
9
The influence of working-memory demand and subject performance on prefrontal cortical activity.
J Cogn Neurosci. 2002 Jul 1;14(5):721-31. doi: 10.1162/08989290260138627.
10

引用本文的文献

1
Using multivariate partial least squares on fNIRS data to examine load-dependent brain-behaviour relationships in aging.
PLoS One. 2024 Oct 14;19(10):e0312109. doi: 10.1371/journal.pone.0312109. eCollection 2024.
2
Age differences in BOLD modulation to task difficulty as a function of amyloid burden.
Cereb Cortex. 2024 Sep 3;34(9). doi: 10.1093/cercor/bhae357.
4
Efficacy of Corsi Block Tapping Task training for improving visuospatial skills: a non-randomized two-group study.
Exp Brain Res. 2022 Nov;240(11):3023-3032. doi: 10.1007/s00221-022-06478-5. Epub 2022 Oct 13.
5
Load effects on spatial working memory performance are linked to distributed alpha and beta oscillations.
Hum Brain Mapp. 2019 Aug 15;40(12):3682-3689. doi: 10.1002/hbm.24625. Epub 2019 May 11.
6
Performance Level and Cortical Atrophy Modulate the Neural Response to Increasing Working Memory Load in Younger and Older Adults.
Front Aging Neurosci. 2018 Sep 11;10:265. doi: 10.3389/fnagi.2018.00265. eCollection 2018.
8
Occupational attainment influences longitudinal decline in behavioral variant frontotemporal degeneration.
Brain Imaging Behav. 2019 Feb;13(1):293-301. doi: 10.1007/s11682-018-9852-x.
9
Dissociating Normal Aging from Alzheimer's Disease: A View from Cognitive Neuroscience.
J Alzheimers Dis. 2017;57(2):331-352. doi: 10.3233/JAD-161099.

本文引用的文献

1
The impact of age on prefrontal cortex integrity during spatial working memory retrieval.
Neuropsychologia. 2014 Jul;59:157-68. doi: 10.1016/j.neuropsychologia.2014.04.020. Epub 2014 May 10.
2
The impact of age on load-related dorsolateral prefrontal cortex activation.
Front Aging Neurosci. 2014 Feb 5;6:9. doi: 10.3389/fnagi.2014.00009. eCollection 2014.
3
The block suppression test uncovers specific inhibitory deficits in mild cognitive impairment.
Int J Geriatr Psychiatry. 2013 Jul;28(7):769-70. doi: 10.1002/gps.3910.
5
Lateral prefrontal cortex is organized into parallel dorsal and ventral streams along the rostro-caudal axis.
Cereb Cortex. 2013 Oct;23(10):2457-66. doi: 10.1093/cercor/bhs223. Epub 2012 Aug 9.
6
The impact of aging on gray matter structural covariance networks.
Neuroimage. 2012 Nov 1;63(2):754-9. doi: 10.1016/j.neuroimage.2012.06.052. Epub 2012 Jul 6.
7
Lifespan age differences in working memory: a two-component framework.
Neurosci Biobehav Rev. 2012 Oct;36(9):2007-33. doi: 10.1016/j.neubiorev.2012.06.004. Epub 2012 Jul 6.
8
Age differences in the frontoparietal cognitive control network: implications for distractibility.
Neuropsychologia. 2012 Jul;50(9):2212-23. doi: 10.1016/j.neuropsychologia.2012.05.025. Epub 2012 May 31.
9
A meta-analysis of executive components of working memory.
Cereb Cortex. 2013 Feb;23(2):264-82. doi: 10.1093/cercor/bhs007. Epub 2012 Feb 7.
10
Modelling neural correlates of working memory: a coordinate-based meta-analysis.
Neuroimage. 2012 Mar;60(1):830-46. doi: 10.1016/j.neuroimage.2011.11.050. Epub 2011 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验