Suppr超能文献

单纯疱疹病毒1型(HSV-1)和单纯疱疹病毒2型(HSV-2)通过病毒核糖核苷酸还原酶大亚基R1介导程序性坏死的物种特异性调节。

Herpes Simplex Virus 1 (HSV-1) and HSV-2 Mediate Species-Specific Modulations of Programmed Necrosis through the Viral Ribonucleotide Reductase Large Subunit R1.

作者信息

Yu Xiaoliang, Li Yun, Chen Qin, Su Chenhe, Zhang Zili, Yang Chengkui, Hu Zhilin, Hou Jue, Zhou Jinying, Gong Ling, Jiang Xuejun, Zheng Chunfu, He Sudan

机构信息

Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, and Collaborative Innovation Center of Hematology and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.

Soochow University, Institutes of Biology and Medical Sciences, Suzhou, China.

出版信息

J Virol. 2015 Nov 11;90(2):1088-95. doi: 10.1128/JVI.02446-15. Print 2016 Jan 15.

Abstract

UNLABELLED

Receptor-interacting protein kinase 3 (RIP3) and its substrate mixed-lineage kinase domain-like protein (MLKL) are core regulators of programmed necrosis. The elimination of pathogen-infected cells by programmed necrosis acts as an important host defense mechanism. Here, we report that human herpes simplex virus 1 (HSV-1) and HSV-2 had opposite impacts on programmed necrosis in human cells versus their impacts in mouse cells. Similar to HSV-1, HSV-2 infection triggered programmed necrosis in mouse cells. However, neither HSV-1 nor HSV-2 infection was able to induce programmed necrosis in human cells. Moreover, HSV-1 or HSV-2 infection in human cells blocked tumor necrosis factor (TNF)-induced necrosis by preventing the induction of an RIP1/RIP3 necrosome. The HSV ribonucleotide reductase large subunit R1 was sufficient to suppress TNF-induced necrosis, and its RIP homotypic interaction motif (RHIM) domain was required to disrupt the RIP1/RIP3 complex in human cells. Therefore, this study provides evidence that HSV has likely evolved strategies to evade the host defense mechanism of programmed necrosis in human cells.

IMPORTANCE

This study demonstrated that infection with HSV-1 and HSV-2 blocked TNF-induced necrosis in human cells while these viruses directly activated programmed necrosis in mouse cells. Expression of HSV R1 suppressed TNF-induced necrosis of human cells. The RHIM domain of R1 was essential for its association with human RIP3 and RIP1, leading to disruption of the RIP1/RIP3 complex. This study provides new insights into the species-specific modulation of programmed necrosis by HSV.

摘要

未标记

受体相互作用蛋白激酶3(RIP3)及其底物混合谱系激酶结构域样蛋白(MLKL)是程序性坏死的核心调节因子。通过程序性坏死清除病原体感染的细胞是一种重要的宿主防御机制。在此,我们报告单纯疱疹病毒1型(HSV-1)和HSV-2对人类细胞中程序性坏死的影响与其对小鼠细胞的影响相反。与HSV-1类似,HSV-2感染在小鼠细胞中触发程序性坏死。然而,HSV-1和HSV-2感染均不能在人类细胞中诱导程序性坏死。此外,人类细胞中的HSV-1或HSV-2感染通过阻止RIP1/RIP3坏死小体的诱导来阻断肿瘤坏死因子(TNF)诱导的坏死。HSV核糖核苷酸还原酶大亚基R1足以抑制TNF诱导的坏死,并且其RIP同源相互作用基序(RHIM)结构域是破坏人类细胞中RIP1/RIP3复合物所必需的。因此,本研究提供了证据表明HSV可能已经进化出逃避人类细胞中程序性坏死宿主防御机制的策略。

重要性

本研究表明,HSV-1和HSV-2感染在人类细胞中阻断TNF诱导的坏死,而这些病毒在小鼠细胞中直接激活程序性坏死。HSV R1的表达抑制人类细胞中TNF诱导的坏死。R1的RHIM结构域对于其与人类RIP3和RIP1的结合至关重要,导致RIP1/RIP3复合物的破坏。本研究为HSV对程序性坏死的物种特异性调节提供了新的见解。

相似文献

2
Herpes simplex virus suppresses necroptosis in human cells.
Cell Host Microbe. 2015 Feb 11;17(2):243-51. doi: 10.1016/j.chom.2015.01.003.
3
Direct activation of RIP3/MLKL-dependent necrosis by herpes simplex virus 1 (HSV-1) protein ICP6 triggers host antiviral defense.
Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):15438-43. doi: 10.1073/pnas.1412767111. Epub 2014 Oct 14.
4
RIP1/RIP3 binding to HSV-1 ICP6 initiates necroptosis to restrict virus propagation in mice.
Cell Host Microbe. 2015 Feb 11;17(2):229-42. doi: 10.1016/j.chom.2015.01.002.
7
Manipulation of apoptosis and necroptosis signaling by herpesviruses.
Med Microbiol Immunol. 2015 Jun;204(3):439-48. doi: 10.1007/s00430-015-0410-5. Epub 2015 Apr 1.
10
Manipulation of Host Cell Death Pathways by Herpes Simplex Virus.
Curr Top Microbiol Immunol. 2023;442:85-103. doi: 10.1007/82_2020_196.

引用本文的文献

1
Cytomegalovirus Biology Viewed Through a Cell Death Suppression Lens.
Viruses. 2024 Nov 23;16(12):1820. doi: 10.3390/v16121820.
2
Role of Necroptosis in Intervertebral Disc Degeneration.
Int J Mol Sci. 2023 Oct 18;24(20):15292. doi: 10.3390/ijms242015292.
3
PANoptosome signaling and therapeutic implications in infection: central role for ZBP1 to activate the inflammasome and PANoptosis.
Curr Opin Immunol. 2023 Aug;83:102348. doi: 10.1016/j.coi.2023.102348. Epub 2023 May 31.
4
Necroptosis in CNS diseases: Focus on astrocytes.
Front Aging Neurosci. 2023 Jan 27;14:1016053. doi: 10.3389/fnagi.2022.1016053. eCollection 2022.
5
Necroptosis at a glance.
J Cell Sci. 2022 Sep 1;135(17). doi: 10.1242/jcs.260091. Epub 2022 Sep 13.
6
Regulated necrosis, a proinflammatory cell death, potentially counteracts pathogenic infections.
Cell Death Dis. 2022 Jul 22;13(7):637. doi: 10.1038/s41419-022-05066-3.
7
Small Hero with Great Powers: Vaccinia Virus E3 Protein and Evasion of the Type I IFN Response.
Biomedicines. 2022 Jan 22;10(2):235. doi: 10.3390/biomedicines10020235.
8
The role of necroptosis in disease and treatment.
MedComm (2020). 2021 Dec 20;2(4):730-755. doi: 10.1002/mco2.108. eCollection 2021 Dec.
9
PANoptosis: A New Insight Into Oral Infectious Diseases.
Front Immunol. 2021 Dec 14;12:789610. doi: 10.3389/fimmu.2021.789610. eCollection 2021.
10
Species-Specific Inhibition of Necroptosis by HCMV UL36.
Viruses. 2021 Oct 22;13(11):2134. doi: 10.3390/v13112134.

本文引用的文献

1
Herpes simplex virus suppresses necroptosis in human cells.
Cell Host Microbe. 2015 Feb 11;17(2):243-51. doi: 10.1016/j.chom.2015.01.003.
2
RIP1/RIP3 binding to HSV-1 ICP6 initiates necroptosis to restrict virus propagation in mice.
Cell Host Microbe. 2015 Feb 11;17(2):229-42. doi: 10.1016/j.chom.2015.01.002.
3
Direct activation of RIP3/MLKL-dependent necrosis by herpes simplex virus 1 (HSV-1) protein ICP6 triggers host antiviral defense.
Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):15438-43. doi: 10.1073/pnas.1412767111. Epub 2014 Oct 14.
4
Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3.
Mol Cell. 2014 Apr 10;54(1):133-146. doi: 10.1016/j.molcel.2014.03.003. Epub 2014 Apr 3.
5
Programmed necrosis in microbial pathogenesis.
Trends Microbiol. 2014 Apr;22(4):199-207. doi: 10.1016/j.tim.2014.01.005. Epub 2014 Feb 21.
6
Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death.
Cell Res. 2014 Jan;24(1):105-21. doi: 10.1038/cr.2013.171. Epub 2013 Dec 24.
7
Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis.
Nat Cell Biol. 2014 Jan;16(1):55-65. doi: 10.1038/ncb2883. Epub 2013 Dec 8.
8
CYLD deubiquitinates RIP1 in the TNFα-induced necrosome to facilitate kinase activation and programmed necrosis.
PLoS One. 2013 Oct 2;8(10):e76841. doi: 10.1371/journal.pone.0076841. eCollection 2013.
9
Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL.
J Biol Chem. 2013 Oct 25;288(43):31268-79. doi: 10.1074/jbc.M113.462341. Epub 2013 Sep 9.
10
RIP3: a molecular switch for necrosis and inflammation.
Genes Dev. 2013 Aug 1;27(15):1640-9. doi: 10.1101/gad.223321.113.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验