文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

对大量口腔颌面裂患者队列的拷贝数变异进行系统分析,确定了口腔颌面裂的候选基因。

Systematic analysis of copy number variants of a large cohort of orofacial cleft patients identifies candidate genes for orofacial clefts.

作者信息

Conte Federica, Oti Martin, Dixon Jill, Carels Carine E L, Rubini Michele, Zhou Huiqing

机构信息

Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands.

Medical Genetic Unit, Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy.

出版信息

Hum Genet. 2016 Jan;135(1):41-59. doi: 10.1007/s00439-015-1606-x. Epub 2015 Nov 11.


DOI:10.1007/s00439-015-1606-x
PMID:26561393
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4698300/
Abstract

Orofacial clefts (OFCs) represent a large fraction of human birth defects and are one of the most common phenotypes affected by large copy number variants (CNVs). Due to the limited number of CNV patients in individual centers, CNV analyses of a large number of OFC patients are challenging. The present study analyzed 249 genomic deletions and 226 duplications from a cohort of 312 OFC patients reported in two publicly accessible databases of chromosome imbalance and phenotype in humans, DECIPHER and ECARUCA. Genomic regions deleted or duplicated in multiple patients were identified, and genes in these overlapping CNVs were prioritized based on the number of genes encompassed by the region and gene expression in embryonic mouse palate. Our analyses of these overlapping CNVs identified two genes known to be causative for human OFCs, SATB2 and MEIS2, and 12 genes (DGCR6, FGF2, FRZB, LETM1, MAPK3, SPRY1, THBS1, TSHZ1, TTC28, TULP4, WHSC1, WHSC2) that are associated with OFC or orofacial development. Additionally, we report 34 deleted and 24 duplicated genes that have not previously been associated with OFCs but are associated with the BMP, MAPK and RAC1 pathways. Statistical analyses show that the high number of overlapping CNVs is not due to random occurrence. The identified genes are not located in highly variable genomic regions in healthy populations and are significantly enriched for genes that are involved in orofacial development. In summary, we report a CNV analysis pipeline of a large cohort of OFC patients and identify novel candidate OFC genes.

摘要

口面部裂隙(OFCs)占人类出生缺陷的很大一部分,是受大拷贝数变异(CNVs)影响的最常见表型之一。由于各个中心的CNV患者数量有限,对大量OFC患者进行CNV分析具有挑战性。本研究分析了来自人类染色体失衡与表型的两个公开数据库DECIPHER和ECARUCA中报告的312例OFC患者队列中的249个基因组缺失和226个重复。确定了在多个患者中缺失或重复的基因组区域,并根据该区域包含的基因数量和胚胎小鼠腭中的基因表达,对这些重叠CNV中的基因进行了优先级排序。我们对这些重叠CNV的分析确定了两个已知导致人类OFC的基因,SATB2和MEIS2,以及12个与OFC或口面部发育相关的基因(DGCR6、FGF2、FRZB、LETM1、MAPK3、SPRY1、THBS1、TSHZ1、TTC28、TULP4、WHSC1、WHSC2)。此外,我们报告了34个缺失基因和24个重复基因,这些基因以前未与OFC相关,但与BMP、MAPK和RAC1途径相关。统计分析表明,大量重叠CNV并非随机出现。所确定的基因并不位于健康人群中高度可变的基因组区域,并且在参与口面部发育的基因中显著富集。总之,我们报告了一个对大量OFC患者队列的CNV分析流程,并确定了新的OFC候选基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0960/4698300/285957e43cac/439_2015_1606_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0960/4698300/6e5e286058dc/439_2015_1606_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0960/4698300/76a682509263/439_2015_1606_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0960/4698300/285957e43cac/439_2015_1606_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0960/4698300/6e5e286058dc/439_2015_1606_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0960/4698300/76a682509263/439_2015_1606_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0960/4698300/285957e43cac/439_2015_1606_Fig3_HTML.jpg

相似文献

[1]
Systematic analysis of copy number variants of a large cohort of orofacial cleft patients identifies candidate genes for orofacial clefts.

Hum Genet. 2016-1

[2]
Investigation of genetic factors underlying typical orofacial clefts: mutational screening and copy number variation.

J Hum Genet. 2015-1

[3]
Genome-wide analysis of copy-number variation in humans with cleft lip and/or cleft palate identifies COBLL1, RIC1, and ARHGEF38 as clefting genes.

Am J Hum Genet. 2023-1-5

[4]
Application of high resolution SNP arrays in patients with congenital oral clefts in south China.

J Genet. 2016-12

[5]
Distinct DNA methylation profiles in subtypes of orofacial cleft.

Clin Epigenetics. 2017-6-8

[6]
Identification of as a Novel Clefting and Craniofacial Patterning Gene in Humans.

Genetics. 2017-11-21

[7]
Whole genome sequencing of orofacial cleft trios from the Gabriella Miller Kids First Pediatric Research Consortium identifies a new locus on chromosome 21.

Hum Genet. 2019-12-17

[8]
Investigating gene functions and single-cell expression profiles of de novo variants in orofacial clefts.

HGG Adv. 2024-7-18

[9]
Pleiotropy method reveals genetic overlap between orofacial clefts at multiple novel loci from GWAS of multi-ethnic trios.

PLoS Genet. 2021-7

[10]
The evolution of human genetic studies of cleft lip and cleft palate.

Annu Rev Genomics Hum Genet. 2012-6-6

引用本文的文献

[1]
Copy number variants and their implications for developmental and behavioural problems in cleft lip and/or palate.

Hum Mol Genet. 2025-9-3

[2]
Oral phenotype in SATB2-associated syndrome: cross-sectional study of the French cohort.

Orphanet J Rare Dis. 2025-6-5

[3]
Genetic-epigenetic interactions (meQTLs) in orofacial clefts etiology.

medRxiv. 2025-2-12

[4]
Association of prenatal Cleft Lip and Palate ultrasound abnormalities with copy number variants at a single Chinese tertiary center.

Ital J Pediatr. 2024-8-21

[5]
Rare variants analyses suggest novel cleft genes in the African population.

Sci Rep. 2024-6-20

[6]
Rare Variants Analyses Suggest Novel Cleft Genes in the African Population.

Res Sq. 2024-2-27

[7]
Identification of a Novel Variant of Associated with Nonsyndromic Cleft Lip and Palate in a Chinese Family.

Int J Genomics. 2023-9-21

[8]
Diagnostic Gene Panel Testing in (Non)-Syndromic Patients with Cleft Lip, Alveolus and/or Palate in the Netherlands.

Mol Syndromol. 2023-8

[9]
Analysis of exome data in a UK cohort of 603 patients with syndromic orofacial clefting identifies causal molecular pathways.

Hum Mol Genet. 2023-5-18

[10]
Advances in research of biological functions of Isthmin-1.

J Cell Commun Signal. 2023-9

本文引用的文献

[1]
Disruption of the ERK/MAPK pathway in neural crest cells as a potential cause of Pierre Robin sequence.

Development. 2015-11-1

[2]
Diagnostic interpretation of array data using public databases and internet sources.

Hum Mutat. 2012-6

[3]
ERK2 Alone Drives Inflammatory Pain But Cooperates with ERK1 in Sensory Neuron Survival.

J Neurosci. 2015-6-24

[4]
Cosuppression of Sprouty and Sprouty-related negative regulators of FGF signalling in prostate cancer: a working hypothesis.

Biomed Res Int. 2015

[5]
Protocadherins branch out: Multiple roles in dendrite development.

Cell Adh Migr. 2015

[6]
Yes-mediated phosphorylation of focal adhesion kinase at tyrosine 861 increases metastatic potential of prostate cancer cells.

Oncotarget. 2015-4-30

[7]
Role of region-distinctive expression of Rac1 in regulating fibronectin arrangement during palatal shelf elevation.

Cell Tissue Res. 2015-9

[8]
MEIS2 involvement in cardiac development, cleft palate, and intellectual disability.

Am J Med Genet A. 2015-5

[9]
Retinoic acid inhibits histone methyltransferase Whsc1 during palatogenesis.

Biochem Biophys Res Commun. 2015-3-13

[10]
Negative regulation of TGFβ-induced lens epithelial to mesenchymal transition (EMT) by RTK antagonists.

Exp Eye Res. 2015-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索