Suppr超能文献

耗散多体量子系统的弛豫时间

Relaxation times of dissipative many-body quantum systems.

作者信息

Žnidarič Marko

机构信息

Physics Department, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):042143. doi: 10.1103/PhysRevE.92.042143. Epub 2015 Oct 20.

Abstract

We study relaxation times, also called mixing times, of quantum many-body systems described by a Lindblad master equation. We in particular study the scaling of the spectral gap with the system length, the so-called dynamical exponent, identifying a number of transitions in the scaling. For systems with bulk dissipation we generically observe different scaling for small and for strong dissipation strength, with a critical transition strength going to zero in the thermodynamic limit. We also study a related phase transition in the largest decay mode. For systems with only boundary dissipation we show a generic bound that the gap cannot be larger than ∼1/L. In integrable systems with boundary dissipation one typically observes scaling of ∼1/L(3), while in chaotic ones one can have faster relaxation with the gap scaling as ∼1/L and thus saturating the generic bound. We also observe transition from exponential to algebraic gap in systems with localized modes.

摘要

我们研究由林德布拉德主方程描述的量子多体系统的弛豫时间,也称为混合时间。我们特别研究能隙随系统长度的标度,即所谓的动力学指数,确定标度中的一些转变。对于具有体耗散的系统,我们通常观察到小耗散强度和强耗散强度下不同的标度,在热力学极限下临界转变强度趋于零。我们还研究了最大衰减模式中的相关相变。对于仅具有边界耗散的系统,我们给出了一个一般的界限,即能隙不能大于 ∼1/L。在具有边界耗散的可积系统中,通常观察到 ∼1/L(3) 的标度,而在混沌系统中,能隙标度为 ∼1/L 时弛豫可能更快,从而达到一般界限饱和。我们还观察到具有局域模式的系统中从指数能隙到代数能隙的转变。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验