Jiang Kai, Tong Jiajun, Zhang Pingwen, Shi An-Chang
School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, P.R. China.
LMAM, CAPT and School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):042159. doi: 10.1103/PhysRevE.92.042159. Epub 2015 Oct 29.
The relative stability of two-dimensional soft quasicrystals in systems with two length scales is examined using a recently developed projection method, which provides a unified numerical framework to compute the free energy of periodic crystal and quasicrystals. Accurate free energies of numerous ordered phases, including dodecagonal, decagonal, and octagonal quasicrystals, are obtained for a simple model, i.e., the Lifshitz-Petrich free-energy functional, of soft quasicrystals with two length scales. The availability of the free energy allows us to construct phase diagrams of the system, demonstrating that, for the Lifshitz-Petrich model, the dodecagonal and decagonal quasicrystals can become stable phases, whereas the octagonal quasicrystal stays as a metastable phase.
利用最近开发的投影方法,研究了具有两个长度尺度的系统中二维软准晶体的相对稳定性,该方法提供了一个统一的数值框架来计算周期性晶体和准晶体的自由能。对于一个简单模型,即具有两个长度尺度的软准晶体的Lifshitz-Petrich自由能泛函,获得了包括十二边形、十边形和八边形准晶体在内的众多有序相的精确自由能。自由能的可得性使我们能够构建该系统的相图,表明对于Lifshitz-Petrich模型,十二边形和十边形准晶体可以成为稳定相,而八边形准晶体则保持为亚稳相。