Suppr超能文献

空间扩展可兴奋系统中极端事件的数据驱动预测与预防。

Data-driven prediction and prevention of extreme events in a spatially extended excitable system.

作者信息

Bialonski Stephan, Ansmann Gerrit, Kantz Holger

机构信息

Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany.

Department of Epileptology, University of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn, Germany.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):042910. doi: 10.1103/PhysRevE.92.042910. Epub 2015 Oct 7.

Abstract

Extreme events occur in many spatially extended dynamical systems, often devastatingly affecting human life, which makes their reliable prediction and efficient prevention highly desirable. We study the prediction and prevention of extreme events in a spatially extended system, a system of coupled FitzHugh-Nagumo units, in which extreme events occur in a spatially and temporally irregular way. Mimicking typical constraints faced in field studies, we assume not to know the governing equations of motion and to be able to observe only a subset of all phase-space variables for a limited period of time. Based on reconstructing the local dynamics from data and despite being challenged by the rareness of events, we are able to predict extreme events remarkably well. With small, rare, and spatiotemporally localized perturbations which are guided by our predictions, we are able to completely suppress extreme events in this system.

摘要

极端事件发生在许多空间扩展的动力系统中,常常对人类生活造成毁灭性影响,这使得对其进行可靠预测和有效预防成为人们的强烈愿望。我们研究一个空间扩展系统(由耦合的菲茨休 - 纳古莫单元组成的系统)中的极端事件预测与预防,在该系统中极端事件以时空不规则的方式发生。模仿实地研究中面临的典型限制,我们假设不知道运动的控制方程,并且只能在有限的时间段内观测到所有相空间变量的一个子集。基于从数据中重构局部动力学,尽管受到事件稀少性的挑战,我们仍能够很好地预测极端事件。通过由我们的预测所引导的微小、罕见且时空局部化的扰动,我们能够完全抑制该系统中的极端事件。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验