AbdollahRamezani Sajjad, Arik Kamalodin, Khavasi Amin, Kavehvash Zahra
Opt Lett. 2015 Nov 15;40(22):5239-42. doi: 10.1364/OL.40.005239.
We introduce the new concept of "metalines" for manipulating the amplitude and phase profile of an incident wave locally and independently. Thanks to the highly confined graphene plasmons, a transmit-array of graphene-based metalines is used to realize analog computing on an ultra-compact, integrable, and planar platform. By employing the general concepts of spatial Fourier transformation, a well-designed structure of such meta-transmit-array, combined with graded index (GRIN) lenses, can perform two mathematical operations, i.e., differentiation and integration, with high efficiency. The presented configuration is about 60 times shorter than the recent structure proposed by Silva et al. [Science343, 160 (2014)SCIEAS0036-807510.1126/science.1242818]; moreover, our simulated output responses are in better agreement with the desired analytical results. These findings may lead to remarkable achievements in light-based plasmonic signal processors at nanoscale, instead of their bulky conventional dielectric lens-based counterparts.
我们引入了“金属线”这一新概念,用于局部且独立地操纵入射波的幅度和相位分布。得益于高度受限的石墨烯等离激元,基于石墨烯金属线的发射阵列被用于在超紧凑、可集成的平面平台上实现模拟计算。通过运用空间傅里叶变换的一般概念,精心设计的这种超材料发射阵列结构,结合渐变折射率(GRIN)透镜,能够高效地执行两种数学运算,即微分和积分。所展示的结构比席尔瓦等人近期提出的结构[《科学》343, 160 (2014)SCIEAS0036 - 807510.1126/science.1242818]短约60倍;此外,我们模拟的输出响应与期望的分析结果更为吻合。这些发现可能会在纳米级基于光的等离激元信号处理器方面取得显著成就,而非其庞大笨重且基于传统介电透镜的同类产品。