Kvaal Simen, Helgaker Trygve
Department of Chemistry, Centre for Theoretical and Computational Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway.
J Chem Phys. 2015 Nov 14;143(18):184106. doi: 10.1063/1.4934797.
The relationship between the densities of ground-state wave functions (i.e., the minimizers of the Rayleigh-Ritz variation principle) and the ground-state densities in density-functional theory (i.e., the minimizers of the Hohenberg-Kohn variation principle) is studied within the framework of convex conjugation, in a generic setting covering molecular systems, solid-state systems, and more. Having introduced admissible density functionals as functionals that produce the exact ground-state energy for a given external potential by minimizing over densities in the Hohenberg-Kohn variation principle, necessary and sufficient conditions on such functionals are established to ensure that the Rayleigh-Ritz ground-state densities and the Hohenberg-Kohn ground-state densities are identical. We apply the results to molecular systems in the Born-Oppenheimer approximation. For any given potential v ∈ L(3/2)(ℝ(3)) + L(∞)(ℝ(3)), we establish a one-to-one correspondence between the mixed ground-state densities of the Rayleigh-Ritz variation principle and the mixed ground-state densities of the Hohenberg-Kohn variation principle when the Lieb density-matrix constrained-search universal density functional is taken as the admissible functional. A similar one-to-one correspondence is established between the pure ground-state densities of the Rayleigh-Ritz variation principle and the pure ground-state densities obtained using the Hohenberg-Kohn variation principle with the Levy-Lieb pure-state constrained-search functional. In other words, all physical ground-state densities (pure or mixed) are recovered with these functionals and no false densities (i.e., minimizing densities that are not physical) exist. The importance of topology (i.e., choice of Banach space of densities and potentials) is emphasized and illustrated. The relevance of these results for current-density-functional theory is examined.
在凸共轭的框架下,研究了基态波函数密度(即瑞利 - 里兹变分原理的极小化者)与密度泛函理论中的基态密度(即霍恩伯格 - 科恩变分原理的极小化者)之间的关系,研究范围涵盖分子系统、固态系统等一般情况。引入了可允许密度泛函,即通过在霍恩伯格 - 科恩变分原理中对密度进行极小化来为给定外部势产生精确基态能量的泛函,建立了此类泛函的充要条件,以确保瑞利 - 里兹基态密度与霍恩伯格 - 科恩基态密度相同。我们将结果应用于玻恩 - 奥本海默近似下的分子系统。对于任何给定的势(v \in L^{(3/2)}(\mathbb{R}^3) + L^{\infty}(\mathbb{R}^3)),当将利布密度矩阵约束搜索通用密度泛函作为可允许泛函时,我们在瑞利 - 里兹变分原理的混合基态密度与霍恩伯格 - 科恩变分原理的混合基态密度之间建立了一一对应关系。在瑞利 - 里兹变分原理的纯基态密度与使用列维 - 利布纯态约束搜索泛函通过霍恩伯格 - 科恩变分原理获得的纯基态密度之间也建立了类似的一一对应关系。换句话说,所有物理基态密度(纯态或混合态)都可以用这些泛函恢复,并且不存在虚假密度(即非物理的极小化密度)。强调并说明了拓扑结构(即密度和势的巴拿赫空间的选择)的重要性。研究了这些结果与电流密度泛函理论的相关性。