Suppr超能文献

利用频域光学相干断层扫描技术鉴别糖尿病性黄斑水肿与人工晶状体眼黄斑囊样水肿

Differentiation of Diabetic Macular Edema From Pseudophakic Cystoid Macular Edema by Spectral-Domain Optical Coherence Tomography.

作者信息

Munk Marion R, Jampol Lee M, Simader Christian, Huf Wolfgang, Mittermüller Tamara J, Jaffe Glenn J, Schmidt-Erfurth Ursula

机构信息

Department of Ophthalmology Medical University of Vienna, Vienna, Austria 2Department of Ophthalmology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States 3Department of Ophthalmology, Inselspital, University Hospital B.

Department of Ophthalmology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States.

出版信息

Invest Ophthalmol Vis Sci. 2015 Oct;56(11):6724-33. doi: 10.1167/iovs.15-17042.

Abstract

PURPOSE

To differentiate diabetic macular edema (DME) from pseudophakic cystoid macular edema (PCME) based solely on spectral-domain optical coherence tomography (SD-OCT).

METHODS

This cross-sectional study included 134 participants: 49 with PCME, 60 with DME, and 25 with diabetic retinopathy (DR) and ME after cataract surgery. First, two unmasked experts classified the 25 DR patients after cataract surgery as either DME, PCME, or mixed-pattern based on SD-OCT and color-fundus photography. Then all 134 patients were divided into two datasets and graded by two masked readers according to a standardized reading-protocol. Accuracy of the masked readers to differentiate the diseases based on SD-OCT parameters was tested. Parallel to the masked readers, a computer-based algorithm was established using support vector machine (SVM) classifiers to automatically differentiate disease entities.

RESULTS

The masked readers assigned 92.5% SD-OCT images to the correct clinical diagnose. The classifier-accuracy trained and tested on dataset 1 was 95.8%. The classifier-accuracy trained on dataset 1 and tested on dataset 2 to differentiate PCME from DME was 90.2%. The classifier-accuracy trained and tested on dataset 2 to differentiate all three diseases was 85.5%. In particular, higher central-retinal thickness/retinal-volume ratio, absence of an epiretinal-membrane, and solely inner nuclear layer (INL)-cysts indicated PCME, whereas higher outer nuclear layer (ONL)/INL ratio, the absence of subretinal fluid, presence of hard exudates, microaneurysms, and ganglion cell layer and/or retinal nerve fiber layer cysts strongly favored DME in this model.

CONCLUSIONS

Based on the evaluation of SD-OCT, PCME can be differentiated from DME by masked reader evaluation, and by automated analysis, even in DR patients with ME after cataract surgery. The automated classifier may help to independently differentiate these two disease entities and is made publicly available.

摘要

目的

仅基于频域光学相干断层扫描(SD - OCT)鉴别糖尿病性黄斑水肿(DME)与人工晶状体眼的囊样黄斑水肿(PCME)。

方法

这项横断面研究纳入了134名参与者:49例患有PCME,60例患有DME,25例患有糖尿病视网膜病变(DR)且在白内障手术后发生黄斑水肿(ME)。首先,两名未设盲的专家根据SD - OCT和彩色眼底照片,将25例白内障手术后的DR患者分类为DME、PCME或混合模式。然后将所有134例患者分为两个数据集,并由两名设盲的阅片者根据标准化阅片方案进行分级。测试设盲阅片者基于SD - OCT参数鉴别疾病的准确性。与设盲阅片者并行,使用支持向量机(SVM)分类器建立了基于计算机的算法,以自动鉴别疾病实体。

结果

设盲阅片者将92.5%的SD - OCT图像正确诊断为相应临床疾病。在数据集1上训练并测试的分类器准确率为95.8%。在数据集1上训练并在数据集2上测试以鉴别PCME与DME的分类器准确率为90.2%。在数据集2上训练并测试以鉴别所有三种疾病的分类器准确率为85.5%。特别是,较高的中心视网膜厚度/视网膜体积比、无视网膜前膜以及仅存在内核层(INL)囊肿提示PCME,而较高的外核层(ONL)/INL比、无视网膜下液、存在硬性渗出、微动脉瘤以及神经节细胞层和/或视网膜神经纤维层囊肿在该模型中强烈提示DME。

结论

基于SD - OCT评估,即使在白内障手术后患有ME的DR患者中,通过设盲阅片者评估和自动分析,PCME也可与DME相鉴别。自动分类器可能有助于独立鉴别这两种疾病实体,并且已公开提供。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验