Suppr超能文献

一种关于最大随机堵塞堆积的几何结构理论。

A Geometric-Structure Theory for Maximally Random Jammed Packings.

作者信息

Tian Jianxiang, Xu Yaopengxiao, Jiao Yang, Torquato Salvatore

机构信息

Department of Physics, Qufu Normal University, Qufu 273165, China.

Department of Physics, Dalian University of Technology, Dalian 116024, China.

出版信息

Sci Rep. 2015 Nov 16;5:16722. doi: 10.1038/srep16722.

Abstract

Maximally random jammed (MRJ) particle packings can be viewed as prototypical glasses in that they are maximally disordered while simultaneously being mechanically rigid. The prediction of the MRJ packing density ϕMRJ, among other packing properties of frictionless particles, still poses many theoretical challenges, even for congruent spheres or disks. Using the geometric-structure approach, we derive for the first time a highly accurate formula for MRJ densities for a very wide class of two-dimensional frictionless packings, namely, binary convex superdisks, with shapes that continuously interpolate between circles and squares. By incorporating specific attributes of MRJ states and a novel organizing principle, our formula yields predictions of ϕMRJ that are in excellent agreement with corresponding computer-simulation estimates in almost the entire α-x plane with semi-axis ratio α and small-particle relative number concentration x. Importantly, in the monodisperse circle limit, the predicted ϕMRJ = 0.834 agrees very well with the very recently numerically discovered MRJ density of 0.827, which distinguishes it from high-density "random-close packing" polycrystalline states and hence provides a stringent test on the theory. Similarly, for non-circular monodisperse superdisks, we predict MRJ states with densities that are appreciably smaller than is conventionally thought to be achievable by standard packing protocols.

摘要

最大随机堵塞(MRJ)颗粒堆积可以被视为典型的玻璃态,因为它们在机械刚性的同时具有最大程度的无序性。即使对于全等球体或圆盘,预测MRJ堆积密度ϕMRJ以及无摩擦颗粒的其他堆积特性,仍然存在许多理论挑战。使用几何结构方法,我们首次为一类非常广泛的二维无摩擦堆积,即二元凸超圆盘,推导出了一个高精度的MRJ密度公式,其形状在圆和正方形之间连续插值。通过纳入MRJ状态的特定属性和一种新颖的组织原则,我们的公式在几乎整个半轴比α和小颗粒相对数浓度x的α - x平面中,对ϕMRJ的预测与相应的计算机模拟估计值非常吻合。重要的是,在单分散圆极限情况下,预测的ϕMRJ = 0.834与最近通过数值发现的MRJ密度0.827非常吻合,这使其与高密度“随机紧密堆积”多晶态区分开来,从而为该理论提供了一个严格的检验。同样,对于非圆形单分散超圆盘,我们预测的MRJ状态的密度明显小于传统认为通过标准堆积协议可达到的密度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ed/4644945/3bba78a2786a/srep16722-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验