Suppr超能文献

环境变量的空间尺度缩放改善了小型沙质低地河流中鱼类的物种-栖息地模型。

Spatial Scaling of Environmental Variables Improves Species-Habitat Models of Fishes in a Small, Sand-Bed Lowland River.

作者信息

Radinger Johannes, Wolter Christian, Kail Jochem

机构信息

Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.

Department of Aquatic Ecology, University of Duisburg-Essen, Essen, Germany.

出版信息

PLoS One. 2015 Nov 16;10(11):e0142813. doi: 10.1371/journal.pone.0142813. eCollection 2015.

Abstract

Habitat suitability and the distinct mobility of species depict fundamental keys for explaining and understanding the distribution of river fishes. In recent years, comprehensive data on river hydromorphology has been mapped at spatial scales down to 100 m, potentially serving high resolution species-habitat models, e.g., for fish. However, the relative importance of specific hydromorphological and in-stream habitat variables and their spatial scales of influence is poorly understood. Applying boosted regression trees, we developed species-habitat models for 13 fish species in a sand-bed lowland river based on river morphological and in-stream habitat data. First, we calculated mean values for the predictor variables in five distance classes (from the sampling site up to 4000 m up- and downstream) to identify the spatial scale that best predicts the presence of fish species. Second, we compared the suitability of measured variables and assessment scores related to natural reference conditions. Third, we identified variables which best explained the presence of fish species. The mean model quality (AUC = 0.78, area under the receiver operating characteristic curve) significantly increased when information on the habitat conditions up- and downstream of a sampling site (maximum AUC at 2500 m distance class, +0.049) and topological variables (e.g., stream order) were included (AUC = +0.014). Both measured and assessed variables were similarly well suited to predict species' presence. Stream order variables and measured cross section features (e.g., width, depth, velocity) were best-suited predictors. In addition, measured channel-bed characteristics (e.g., substrate types) and assessed longitudinal channel features (e.g., naturalness of river planform) were also good predictors. These findings demonstrate (i) the applicability of high resolution river morphological and instream-habitat data (measured and assessed variables) to predict fish presence, (ii) the importance of considering habitat at spatial scales larger than the sampling site, and (iii) that the importance of (river morphological) habitat characteristics differs depending on the spatial scale.

摘要

栖息地适宜性和物种独特的迁移能力是解释和理解河流水生鱼类分布的关键因素。近年来,已绘制出空间尺度低至100米的河流地貌综合数据,这些数据可为高分辨率物种-栖息地模型(如鱼类模型)提供支持。然而,特定水文形态和河道内栖息地变量的相对重要性及其影响的空间尺度仍知之甚少。我们应用增强回归树,基于河流形态和河道内栖息地数据,为一条砂质河床的低地河流中的13种鱼类建立了物种-栖息地模型。首先,我们计算了五个距离类别(从采样点向上和向下延伸至4000米)中预测变量的平均值,以确定最能预测鱼类物种存在的空间尺度。其次,我们比较了实测变量和与自然参考条件相关的评估分数的适用性。第三,我们确定了最能解释鱼类物种存在的变量。当纳入采样点上下游栖息地条件信息(在2500米距离类别处AUC最大,增加0.049)和拓扑变量(如河流等级)时,平均模型质量(AUC = 0.78,即接收者操作特征曲线下的面积)显著提高(AUC增加0.014)。实测变量和评估变量在预测物种存在方面同样适用。河流等级变量和实测断面特征(如宽度、深度、流速)是最适合的预测因子。此外,实测河床特征(如基质类型)和评估的纵向河道特征(如河型的自然度)也是良好的预测因子。这些发现表明:(i)高分辨率河流形态和河道内栖息地数据(实测和评估变量)可用于预测鱼类的存在;(ii)考虑大于采样点空间尺度的栖息地的重要性;(iii)(河流形态)栖息地特征的重要性因空间尺度而异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/963d/4646645/d8fb98840ff2/pone.0142813.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验