Suppr超能文献

一个推理与记忆的动态模型。

A dynamic model of reasoning and memory.

作者信息

Hawkins Guy E, Hayes Brett K, Heit Evan

机构信息

School of Psychology.

School of Social Sciences, Humanities and Arts.

出版信息

J Exp Psychol Gen. 2016 Feb;145(2):155-180. doi: 10.1037/xge0000113.

Abstract

Previous models of category-based induction have neglected how the process of induction unfolds over time. We conceive of induction as a dynamic process and provide the first fine-grained examination of the distribution of response times observed in inductive reasoning. We used these data to develop and empirically test the first major quantitative modeling scheme that simultaneously accounts for inductive decisions and their time course. The model assumes that knowledge of similarity relations among novel test probes and items stored in memory drive an accumulation-to-bound sequential sampling process: Test probes with high similarity to studied exemplars are more likely to trigger a generalization response, and more rapidly, than items with low exemplar similarity. We contrast data and model predictions for inductive decisions with a recognition memory task using a common stimulus set. Hierarchical Bayesian analyses across 2 experiments demonstrated that inductive reasoning and recognition memory primarily differ in the threshold to trigger a decision: Observers required less evidence to make a property generalization judgment (induction) than an identity statement about a previously studied item (recognition). Experiment 1 and a condition emphasizing decision speed in Experiment 2 also found evidence that inductive decisions use lower quality similarity-based information than recognition. The findings suggest that induction might represent a less cautious form of recognition. We conclude that sequential sampling models grounded in exemplar-based similarity, combined with hierarchical Bayesian analysis, provide a more fine-grained and informative analysis of the processes involved in inductive reasoning than is possible solely through examination of choice data.

摘要

以往基于类别的归纳模型忽略了归纳过程是如何随时间展开的。我们将归纳视为一个动态过程,并首次对归纳推理中观察到的反应时间分布进行了细致的考察。我们利用这些数据开发并实证检验了首个主要的定量建模方案,该方案同时考虑了归纳决策及其时间进程。该模型假设,新测试探针与存储在记忆中的项目之间的相似关系知识驱动了一个累积到边界的序列抽样过程:与已研究范例高度相似的测试探针比与范例相似度低的项目更有可能引发泛化反应,而且速度更快。我们使用一组常见刺激,将归纳决策的数据和模型预测与识别记忆任务进行对比。对2个实验进行的分层贝叶斯分析表明,归纳推理和识别记忆的主要区别在于触发决策的阈值:与对先前研究项目的同一性陈述(识别)相比,观察者做出属性泛化判断(归纳)所需的证据更少。实验1以及实验2中一个强调决策速度的条件还发现,有证据表明归纳决策使用的基于相似度的信息质量低于识别。研究结果表明,归纳可能代表了一种不那么谨慎的识别形式。我们得出结论,基于范例相似度的序列抽样模型与分层贝叶斯分析相结合,比仅通过检查选择数据能更细致、更全面地分析归纳推理所涉及的过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验