Zhao Hong Jian, Xu Changsong, Yang Yurong, Duan Wenhui, Chen Xiang Ming, Bellaiche L
Laboratory of Dielectric Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China. Institute for Nanoscience and Engineering and Physics Department, University of Arkansas, Fayetteville, AR 72701, USA.
J Phys Condens Matter. 2015 Dec 9;27(48):485901. doi: 10.1088/0953-8984/27/48/485901. Epub 2015 Nov 16.
First-principles calculations are performed to compare the energetics of several phases, including hexagonal polar P6(3)cm and perovskite non-polar Pbnm-like states, of epitaxial RFeO3 films (with R = Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er and Lu) grown on different cubic (1 1 1)- and hexagonal (0 0 0 1)-oriented substrates. The P63cm phase is found to be the ground state for large enough in-plane lattice parameters in all investigated RFeO3 films, and its polarization is tunable by the amount of epitaxial strain. Series of available substrates allowing the growth of hexagonal polar RFeO3 films, as well as other phenomena of fundamental and technological importance (e.g. different ground states and coexistence between several phases) are also predicted.