Department of Physics, University of Basel , Klingelbergstrasse 82, Basel 4056, Switzerland.
Center for Nano and Micro Mechanics, Tsinghua University , Beijing 100084, China.
ACS Nano. 2016 Jan 26;10(1):713-22. doi: 10.1021/acsnano.5b05761. Epub 2015 Dec 1.
The low-temperature mechanical response of a single porphyrin molecule attached to the apex of an atomic force microscope (AFM) tip during vertical and lateral manipulations is studied. We find that approach-retraction cycles as well as surface scanning with the terminated tip result in atomic-scale friction patterns induced by the internal reorientations of the molecule. With a joint experimental and computational effort, we identify the dicyanophenyl side groups of the molecule interacting with the surface as the dominant factor determining the observed frictional behavior. To this end, we developed a generalized Prandtl-Tomlinson model parametrized using density functional theory calculations that includes the internal degrees of freedom of the side group with respect to the core and its interactions with the underlying surface. We demonstrate that the friction pattern results from the variations of the bond length and bond angles between the dicyanophenyl side group and the porphyrin backbone as well as those of the CN group facing the surface during the lateral and vertical motion of the AFM tip.
研究了在原子力显微镜(AFM)针尖顶端附着的单个卟啉分子在垂直和侧向操作过程中的低温力学响应。我们发现,在接近-后退循环以及用末端针尖进行表面扫描的过程中,分子的内部重取向会导致原子级摩擦模式。通过实验和计算的共同努力,我们确定与表面相互作用的分子的二氰基苯基侧基是决定观察到的摩擦行为的主要因素。为此,我们开发了一个广义的 Prandtl-Tomlinson 模型,该模型使用密度泛函理论计算进行参数化,其中包括侧基相对于核心的内部自由度及其与基底表面的相互作用。我们证明,摩擦模式是由 AFM 针尖侧向和垂直运动过程中二氰基苯基侧基与卟啉主链之间的键长和键角的变化以及 CN 基团与表面之间的键长和键角的变化引起的。