Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education , Jinan 250100, China.
Biomacromolecules. 2015 Dec 14;16(12):4004-12. doi: 10.1021/acs.biomac.5b01372. Epub 2015 Nov 23.
Here we construct for the first time ordered surfactant-DNA hybrid nanospheres of double-strand (ds) DNA and cationic surfactants with magnetic counterion, FeCl3Br. The specificity of the magnetic cationic surfactants that can compact DNA at high concentrations makes it possible for building ordered nanospheres through aggregation, fusion, and coagulation. Cationic surfactants with conventional Br(-) cannot produce spheres under the same condition because they lose the DNA compaction ability. When a light-responsive magnetic cationic surfactant is used to produce nanospheres, a dual-controllable drug-delivery platform can be built simply by the applications of external magnetic force and alternative UV and visible light. These nanospheres obtain high drug absorption efficiency, slow release property, and good biocompatibility. There is potential for effective magnetic-field-based targeted drug delivery, followed by photocontrollable drug release. We deduce that our results might be of great interest for making new functional nucleic-acid-based nanomachines and be envisioned to find applications in nanotechnology and biochemistry.
我们首次构建了具有磁性抗衡离子FeCl3Br的有序双层(ds)DNA 和阳离子表面活性剂混合纳米球。由于磁性阳离子表面活性剂可以在高浓度下使 DNA 发生紧缩,因此通过聚集、融合和凝聚来构建有序纳米球成为可能。在相同条件下,具有常规 Br(-)的阳离子表面活性剂不能产生球体,因为它们丧失了压缩 DNA 的能力。当使用光响应磁性阳离子表面活性剂来制备纳米球时,通过施加外部磁场和交替使用紫外光和可见光,可简单地构建双可控药物输送平台。这些纳米球具有高药物吸收效率、缓慢释放特性和良好的生物相容性。有望实现有效的基于磁场的靶向药物输送,随后进行光控药物释放。我们推断,我们的研究结果可能对制造新型功能核酸纳米机器具有重要意义,并有望在纳米技术和生物化学领域得到应用。