Uemura Kazunori, Kawada Toru, Zheng Can, Sugimachi Masaru
IEEE Trans Biomed Eng. 2016 Aug;63(8):1699-708. doi: 10.1109/TBME.2015.2499782. Epub 2015 Nov 11.
We have been developing an automated cardiovascular drug infusion system for simultaneous control of arterial pressure (AP), cardiac output (CO), and left atrial pressure (PLA) in decompensated heart failure (HF). In our prototype system, CO and PLA were measured invasively through thoracotomy. Furthermore, the control logic inevitably required use of inotropes to improve hemodynamics, which was not in line with clinical HF guidelines. The goal of this study was to solve these problems and develop a clinically feasible system. We integrated to the system minimally invasive monitors of CO and pulmonary capillary wedge pressure (PCWP, surrogates for PLA) that we developed recently. We also redesigned the control logic to reduce the use of inotrope. We applied the newly developed system to nine dogs with decompensated HF. Once activated, our system started to control the infusion of vasodilator and diuretics in all the animals. Inotrope was not infused in three animals, and infused at minimal doses in six animals that were intolerant of vasodilator infusion alone. Within 50 min, our system controlled AP, CO, and PCWP to their respective targets accurately. Pulmonary artery catheterization confirmed optimization of hemodynamics (AP, from 98 ± 4 to 74 ± 11 mmHg; CO, from 2.2 ± 0.5 to 2.9 ± 0.3 L·min(-1)·m(-2); PCWP, from 27.0 ± 6.6 to 13.8 ± 3.0 mmHg). In a minimally invasive setting while reducing the use of inotrope, our system succeeded in automatically optimizing the overall hemodynamics in canine models of HF. The present results pave the way for clinical application of our automated drug infusion system.
我们一直在研发一种自动化心血管药物输注系统,用于在失代偿性心力衰竭(HF)中同时控制动脉压(AP)、心输出量(CO)和左心房压(PLA)。在我们的原型系统中,CO和PLA是通过开胸手术进行有创测量的。此外,控制逻辑不可避免地需要使用正性肌力药物来改善血流动力学,这不符合临床HF指南。本研究的目的是解决这些问题并开发一种临床可行的系统。我们将最近开发的CO和肺毛细血管楔压(PCWP,PLA的替代指标)的微创监测器集成到了该系统中。我们还重新设计了控制逻辑以减少正性肌力药物的使用。我们将新开发的系统应用于9只失代偿性HF犬。一旦激活,我们的系统就开始控制所有动物中血管扩张剂和利尿剂的输注。3只动物未输注正性肌力药物,6只单独不耐受血管扩张剂输注的动物以最小剂量输注正性肌力药物。在50分钟内,我们的系统将AP、CO和PCWP准确地控制到各自的目标值。肺动脉导管插入术证实了血流动力学的优化(AP,从98±4降至74±11 mmHg;CO,从2.2±0.5升至2.9±0.3 L·min⁻¹·m⁻²;PCWP,从27.0±6.6降至13.8±3.0 mmHg)。在微创环境下,同时减少正性肌力药物的使用,我们的系统成功地自动优化了HF犬模型的整体血流动力学。目前的结果为我们的自动化药物输注系统的临床应用铺平了道路。