Rusinova Radda, Koeppe Roger E, Andersen Olaf S
Department of Physiology and Biophysics and Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065 Department of Physiology and Biophysics and Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065
Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701.
J Gen Physiol. 2015 Dec;146(6):463-75. doi: 10.1085/jgp.201511470. Epub 2015 Nov 16.
Amiodarone is a widely prescribed antiarrhythmic drug used to treat the most prevalent type of arrhythmia, atrial fibrillation (AF). At therapeutic concentrations, amiodarone alters the function of many diverse membrane proteins, which results in complex therapeutic and toxicity profiles. Other antiarrhythmics, such as dronedarone, similarly alter the function of multiple membrane proteins, suggesting that a multipronged mechanism may be beneficial for treating AF, but raising questions about how these antiarrhythmics regulate a diverse range of membrane proteins at similar concentrations. One possible mechanism is that these molecules regulate membrane protein function by altering the common environment provided by the host lipid bilayer. We took advantage of the gramicidin (gA) channels' sensitivity to changes in bilayer properties to determine whether commonly used antiarrhythmics--amiodarone, dronedarone, propranolol, and pindolol, whose pharmacological modes of action range from multi-target to specific--perturb lipid bilayer properties at therapeutic concentrations. Using a gA-based fluorescence assay, we found that amiodarone and dronedarone are potent bilayer modifiers at therapeutic concentrations; propranolol alters bilayer properties only at supratherapeutic concentration, and pindolol has little effect. Using single-channel electrophysiology, we found that amiodarone and dronedarone, but not propranolol or pindolol, increase bilayer elasticity. The overlap between therapeutic and bilayer-altering concentrations, which is observed also using plasma membrane-like lipid mixtures, underscores the need to explore the role of the bilayer in therapeutic as well as toxic effects of antiarrhythmic agents.
胺碘酮是一种广泛应用的抗心律失常药物,用于治疗最常见的心律失常类型——心房颤动(AF)。在治疗浓度下,胺碘酮会改变多种不同膜蛋白的功能,这导致了复杂的治疗和毒性特征。其他抗心律失常药物,如决奈达隆,同样会改变多种膜蛋白的功能,这表明多管齐下的机制可能对治疗房颤有益,但也引发了关于这些抗心律失常药物如何在相似浓度下调节多种膜蛋白的问题。一种可能的机制是,这些分子通过改变宿主脂质双层提供的共同环境来调节膜蛋白功能。我们利用短杆菌肽(gA)通道对双层性质变化的敏感性,来确定常用的抗心律失常药物——胺碘酮、决奈达隆、普萘洛尔和吲哚洛尔,其药理作用模式从多靶点到特异性——在治疗浓度下是否会扰乱脂质双层性质。使用基于gA的荧光测定法,我们发现胺碘酮和决奈达隆在治疗浓度下是有效的双层修饰剂;普萘洛尔仅在超治疗浓度下改变双层性质,而吲哚洛尔几乎没有影响。使用单通道电生理学方法,我们发现胺碘酮和决奈达隆,但不是普萘洛尔或吲哚洛尔,会增加双层弹性。在治疗浓度和双层改变浓度之间的重叠,在使用类似质膜的脂质混合物时也观察到了,这突出了探索双层在抗心律失常药物的治疗和毒性作用中的作用的必要性。