Ingólfsson Helgi I, Thakur Pratima, Herold Karl F, Hobart E Ashley, Ramsey Nicole B, Periole Xavier, de Jong Djurre H, Zwama Martijn, Yilmaz Duygu, Hall Katherine, Maretzky Thorsten, Hemmings Hugh C, Blobel Carl, Marrink Siewert J, Koçer Armağan, Sack Jon T, Andersen Olaf S
Zernike Institute for Advanced Materials, ‡Groningen Biomolecular Science and Biotechnology Institute, University of Groningen , Groningen, The Netherlands.
ACS Chem Biol. 2014 Aug 15;9(8):1788-98. doi: 10.1021/cb500086e. Epub 2014 Jun 17.
A wide variety of phytochemicals are consumed for their perceived health benefits. Many of these phytochemicals have been found to alter numerous cell functions, but the mechanisms underlying their biological activity tend to be poorly understood. Phenolic phytochemicals are particularly promiscuous modifiers of membrane protein function, suggesting that some of their actions may be due to a common, membrane bilayer-mediated mechanism. To test whether bilayer perturbation may underlie this diversity of actions, we examined five bioactive phenols reported to have medicinal value: capsaicin from chili peppers, curcumin from turmeric, EGCG from green tea, genistein from soybeans, and resveratrol from grapes. We find that each of these widely consumed phytochemicals alters lipid bilayer properties and the function of diverse membrane proteins. Molecular dynamics simulations show that these phytochemicals modify bilayer properties by localizing to the bilayer/solution interface. Bilayer-modifying propensity was verified using a gramicidin-based assay, and indiscriminate modulation of membrane protein function was demonstrated using four proteins: membrane-anchored metalloproteases, mechanosensitive ion channels, and voltage-dependent potassium and sodium channels. Each protein exhibited similar responses to multiple phytochemicals, consistent with a common, bilayer-mediated mechanism. Our results suggest that many effects of amphiphilic phytochemicals are due to cell membrane perturbations, rather than specific protein binding.
人们食用各种各样的植物化学物质是因为它们对健康有益。现已发现,其中许多植物化学物质会改变多种细胞功能,但其生物活性背后的机制往往鲜为人知。酚类植物化学物质是膜蛋白功能的特别混杂的调节剂,这表明它们的某些作用可能归因于一种常见的、由膜双层介导的机制。为了测试双层扰动是否可能是这种作用多样性的基础,我们研究了五种据报道具有药用价值的生物活性酚类:辣椒中的辣椒素、姜黄中的姜黄素、绿茶中的表没食子儿茶素没食子酸酯(EGCG)、大豆中的染料木黄酮以及葡萄中的白藜芦醇。我们发现,这些广泛食用的植物化学物质中的每一种都会改变脂质双层特性以及多种膜蛋白的功能。分子动力学模拟表明,这些植物化学物质通过定位于双层/溶液界面来改变双层特性。使用基于短杆菌肽的测定法验证了双层修饰倾向,并使用四种蛋白质证明了对膜蛋白功能的无差别调节:膜锚定金属蛋白酶、机械敏感离子通道以及电压依赖性钾通道和钠通道。每种蛋白质对多种植物化学物质都表现出相似的反应,这与一种常见的、由双层介导的机制一致。我们的结果表明,两亲性植物化学物质的许多作用是由于细胞膜扰动,而非特异性蛋白质结合。