Chandra Dantu Sarath, Nathubhai Kachariya Nitin, Kumar Ashutosh
Cactus Communications Pvt. Ltd, Andheri (W), Mumbai, 400053, India.
Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
Proteins. 2016 Jan;84(1):159-71. doi: 10.1002/prot.24963. Epub 2015 Dec 19.
Polyubiquitination of the target protein by a ubiquitin transferring machinery is key to various cellular processes. E3 ligase Skp1-Cul1-F-box (SCF) is one such complex which plays crucial role in substrate recognition and transfer of the ubiquitin molecule. Previous computational studies have focused on S-phase kinase-associated protein 2 (Skp2), cullin, and RING-finger proteins of this complex, but the roles of the adapter protein Skp1 and F-box domain of Skp2 have not been determined. Using sub-microsecond molecular dynamics simulations of full-length Skp1, unbound Skp2, Skp2-Cks1 (Cks1: Cyclin-dependent kinases regulatory subunit 1), Skp1-Skp2, and Skp1-Skp2-Cks1 complexes, we have elucidated the function of Skp1 and the F-box domain of Skp2. We found that the L16 loop of Skp1, which was deleted in previous X-ray crystallography studies, can offer additional stability to the ternary complex via its interactions with the C-terminal tail of Skp2. Moreover, Skp1 helices H6, H7, and H8 display vivid conformational flexibility when not bound to Skp2, suggesting that these helices can recognize and lock the F-box proteins. Furthermore, we observed that the F-box domain could rotate (5°-129°), and that the binding partner determined the degree of conformational flexibility. Finally, Skp1 and Skp2 were found to execute a domain motion in Skp1-Skp2 and Skp1-Skp2-Cks1 complexes that could decrease the distance between ubiquitination site of the substrate and the ubiquitin molecule by 3 nm. Thus, we propose that both the F-box domain of Skp2 and Skp1-Skp2 domain motions displaying preferential conformational control can together facilitate polyubiquitination of a wide variety of substrates.
泛素转移机制对靶蛋白进行多聚泛素化是各种细胞过程的关键。E3连接酶Skp1-Cul1-F-box(SCF)就是这样一种复合物,它在底物识别和泛素分子转移中起关键作用。以往的计算研究主要集中在该复合物的S期激酶相关蛋白2(Skp2)、cullin和环指蛋白上,但衔接蛋白Skp1和Skp2的F-box结构域的作用尚未确定。通过对全长Skp1、未结合的Skp2、Skp2-Cks1(Cks1:细胞周期蛋白依赖性激酶调节亚基1)、Skp1-Skp2和Skp1-Skp2-Cks1复合物进行亚微秒级分子动力学模拟,我们阐明了Skp1和Skp2的F-box结构域的功能。我们发现,在先前的X射线晶体学研究中缺失的Skp1的L16环,可通过与Skp2的C末端尾巴相互作用为三元复合物提供额外的稳定性。此外,Skp1的螺旋H6、H7和H8在未与Skp2结合时表现出明显的构象灵活性,表明这些螺旋可以识别并锁定F-box蛋白。此外,我们观察到F-box结构域可以旋转(5°-129°),并且结合伴侣决定了构象灵活性的程度。最后,我们发现Skp1和Skp2在Skp1-Skp2和Skp1-Skp2-Cks1复合物中执行结构域运动,这可以使底物的泛素化位点与泛素分子之间的距离缩短3 nm。因此,我们提出Skp2的F-box结构域和显示优先构象控制的Skp1-Skp2结构域运动共同促进多种底物的多聚泛素化。