Heesen Ludwig, Peitz Michael, Torres-Benito Laura, Hölker Irmgard, Hupperich Kristina, Dobrindt Kristina, Jungverdorben Johannes, Ritzenhofen Swetlana, Weykopf Beatrice, Eckert Daniela, Hosseini-Barkooie Seyyed Mohsen, Storbeck Markus, Fusaki Noemi, Lonigro Renata, Heller Raoul, Kye Min Jeong, Brüstle Oliver, Wirth Brunhilde
Institute of Human Genetics, Institute of Genetics and Center for Molecular Medicine Cologne, University of Cologne, Kerpener Str. 34, 50931, Cologne, Germany.
Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany.
Cell Mol Life Sci. 2016 May;73(10):2089-104. doi: 10.1007/s00018-015-2084-y. Epub 2015 Nov 16.
Spinal muscular atrophy (SMA) is a devastating motoneuron (MN) disorder caused by homozygous loss of SMN1. Rarely, SMN1-deleted individuals are fully asymptomatic despite carrying identical SMN2 copies as their SMA III-affected siblings suggesting protection by genetic modifiers other than SMN2. High plastin 3 (PLS3) expression has previously been found in lymphoblastoid cells but not in fibroblasts of asymptomatic compared to symptomatic siblings. To find out whether PLS3 is also upregulated in MNs of asymptomatic individuals and thus a convincing SMA protective modifier, we generated induced pluripotent stem cells (iPSCs) from fibroblasts of three asymptomatic and three SMA III-affected siblings from two families and compared these to iPSCs from a SMA I patient and control individuals. MNs were differentiated from iPSC-derived small molecule neural precursor cells (smNPCs). All four genotype classes showed similar capacity to differentiate into MNs at day 8. However, SMA I-derived MN survival was significantly decreased while SMA III- and asymptomatic-derived MN survival was moderately reduced compared to controls at day 27. SMN expression levels and concomitant gem numbers broadly matched SMN2 copy number distribution; SMA I presented the lowest levels, whereas SMA III and asymptomatic showed similar levels. In contrast, PLS3 was significantly upregulated in mixed MN cultures from asymptomatic individuals pinpointing a tissue-specific regulation. Evidence for strong PLS3 accumulation in shaft and rim of growth cones in MN cultures from asymptomatic individuals implies an important role in neuromuscular synapse formation and maintenance. These findings provide strong evidence that PLS3 is a genuine SMA protective modifier.
脊髓性肌萎缩症(SMA)是一种由SMN1纯合缺失引起的严重运动神经元(MN)疾病。很少有情况是,尽管SMN1缺失的个体与患有SMA III型的同胞携带相同数量的SMN2拷贝,但他们却完全没有症状,这表明除了SMN2之外,还有其他基因修饰因子起到了保护作用。此前发现,与有症状的同胞相比,无症状个体的淋巴母细胞中高丝聚蛋白3(PLS3)表达较高,但成纤维细胞中则不然。为了确定PLS3在无症状个体的运动神经元中是否也上调,从而成为一个有说服力的SMA保护修饰因子,我们从两个家族的三名无症状和三名患有SMA III型的同胞的成纤维细胞中生成了诱导多能干细胞(iPSC),并将其与一名SMA I型患者和对照个体的iPSC进行比较。运动神经元是从iPSC衍生的小分子神经前体细胞(smNPC)分化而来的。在第8天,所有四种基因型类别分化为运动神经元的能力相似。然而,与对照组相比,在第27天,SMA I型衍生的运动神经元存活率显著降低,而SMA III型和无症状个体衍生的运动神经元存活率则适度降低。SMN表达水平和伴随的宝石数量与SMN2拷贝数分布大致匹配;SMA I型的水平最低,而SMA III型和无症状个体的水平相似。相比之下,无症状个体的混合运动神经元培养物中PLS3显著上调,这表明存在组织特异性调节。在无症状个体的运动神经元培养物中,生长锥的轴和边缘有强烈的PLS3积累,这意味着PLS3在神经肌肉突触形成和维持中起重要作用。这些发现提供了有力证据,证明PLS3是一种真正的SMA保护修饰因子。