Suppr超能文献

光感受器概述。

Photoreceptors at a glance.

作者信息

Molday Robert S, Moritz Orson L

机构信息

Department of Biochemistry and Molecular Biology, Centre for Macular Research, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3 Department of Ophthalmology and Visual Sciences, Centre for Macular Research, University of British Columbia, Vancouver, British Columbia, Canada V5Z 3N9

Department of Ophthalmology and Visual Sciences, Centre for Macular Research, University of British Columbia, Vancouver, British Columbia, Canada V5Z 3N9.

出版信息

J Cell Sci. 2015 Nov 15;128(22):4039-45. doi: 10.1242/jcs.175687.

Abstract

Retinal photoreceptor cells contain a specialized outer segment (OS) compartment that functions in the capture of light and its conversion into electrical signals in a process known as phototransduction. In rods, photoisomerization of 11-cis to all-trans retinal within rhodopsin triggers a biochemical cascade culminating in the closure of cGMP-gated channels and hyperpolarization of the cell. Biochemical reactions return the cell to its 'dark state' and the visual cycle converts all-trans retinal back to 11-cis retinal for rhodopsin regeneration. OS are continuously renewed, with aged membrane removed at the distal end by phagocytosis and new membrane added at the proximal end through OS disk morphogenesis linked to protein trafficking. The molecular basis for disk morphogenesis remains to be defined in detail although several models have been proposed, and molecular mechanisms underlying protein trafficking are under active investigation. The aim of this Cell Science at a Glance article and the accompanying poster is to highlight our current understanding of photoreceptor structure, phototransduction, the visual cycle, OS renewal, protein trafficking and retinal degenerative diseases.

摘要

视网膜光感受器细胞包含一个特殊的外段(OS)区室,其在光捕获过程中发挥作用,并在一个称为光转导的过程中将光转化为电信号。在视杆细胞中,视紫红质内11-顺式视黄醛向全反式视黄醛的光异构化引发了一系列生化级联反应,最终导致cGMP门控通道关闭和细胞超极化。生化反应使细胞恢复到“暗状态”,视觉循环将全反式视黄醛转化回11-顺式视黄醛以进行视紫红质再生。外段不断更新,老化的膜在远端通过吞噬作用被清除,新的膜在近端通过与蛋白质运输相关的外段盘形态发生添加。尽管已经提出了几种模型,但盘形态发生的分子基础仍有待详细定义,并且蛋白质运输的分子机制正在积极研究中。这篇“细胞科学一览”文章及随附海报的目的是突出我们目前对光感受器结构、光转导、视觉循环、外段更新、蛋白质运输和视网膜退行性疾病的理解。

相似文献

1
Photoreceptors at a glance.
J Cell Sci. 2015 Nov 15;128(22):4039-45. doi: 10.1242/jcs.175687.
2
Cyclic nucleotide-gated ion channels in rod photoreceptors are protected from retinoid inhibition.
J Gen Physiol. 2006 Oct;128(4):473-85. doi: 10.1085/jgp.200609619.
3
Protein Sorting in Healthy and Diseased Photoreceptors.
Annu Rev Vis Sci. 2019 Sep 15;5:73-98. doi: 10.1146/annurev-vision-091718-014843. Epub 2019 Jun 21.
5
Rhodopsin Trafficking and Mistrafficking: Signals, Molecular Components, and Mechanisms.
Prog Mol Biol Transl Sci. 2015;132:39-71. doi: 10.1016/bs.pmbts.2015.02.007. Epub 2015 Mar 25.
6
Light regulates the ciliary protein transport and outer segment disc renewal of mammalian photoreceptors.
Dev Cell. 2015 Mar 23;32(6):731-42. doi: 10.1016/j.devcel.2015.01.027.
7
The role of motor proteins in photoreceptor protein transport and visual function.
Ophthalmic Genet. 2022 Jun;43(3):285-300. doi: 10.1080/13816810.2022.2062391. Epub 2022 Apr 26.
9
Transport of truncated rhodopsin and its effects on rod function and degeneration.
Invest Ophthalmol Vis Sci. 2007 Jun;48(6):2868-76. doi: 10.1167/iovs.06-0035.

引用本文的文献

2
Marine Derived Strategies Against Neurodegeneration.
Mar Drugs. 2025 Jul 31;23(8):315. doi: 10.3390/md23080315.
3
Stargardt's Disease: Molecular Pathogenesis and Current Therapeutic Landscape.
Int J Mol Sci. 2025 Jul 21;26(14):7006. doi: 10.3390/ijms26147006.
4
Retinal Neurochemistry.
Brain Sci. 2025 Jul 8;15(7):727. doi: 10.3390/brainsci15070727.
5
Top2b-Regulated Genes and Pathways Linked to Retinal Homeostasis and Degeneration.
Cells. 2025 Jun 12;14(12):887. doi: 10.3390/cells14120887.
6
Optical coherence tomography retinal imaging: narrative review of technological advancements and clinical applications.
Ann Transl Med. 2025 Apr 30;13(2):17. doi: 10.21037/atm-24-211. Epub 2025 Apr 29.
8
Changes in glycinergic neurotransmission alter mammalian retinal information processing.
Front Mol Neurosci. 2025 May 9;18:1564870. doi: 10.3389/fnmol.2025.1564870. eCollection 2025.
9
Establishing the pig as a translational animal model for neurodevelopment.
Transl Neurosci. 2025 Apr 24;16(1):20250369. doi: 10.1515/tnsci-2025-0369. eCollection 2025 Jan 1.

本文引用的文献

1
Discs of mammalian rod photoreceptors form through the membrane evagination mechanism.
J Cell Biol. 2015 Nov 9;211(3):495-502. doi: 10.1083/jcb.201508093. Epub 2015 Nov 2.
2
Kinesin family 17 (osmotic avoidance abnormal-3) is dispensable for photoreceptor morphology and function.
FASEB J. 2015 Dec;29(12):4866-80. doi: 10.1096/fj.15-275677. Epub 2015 Jul 30.
3
Heterotrimeric kinesin-2 (KIF3) mediates transition zone and axoneme formation of mouse photoreceptors.
J Biol Chem. 2015 May 15;290(20):12765-78. doi: 10.1074/jbc.M115.638437. Epub 2015 Mar 30.
4
Higher-order architecture of rhodopsin in intact photoreceptors and its implication for phototransduction kinetics.
Structure. 2015 Apr 7;23(4):628-38. doi: 10.1016/j.str.2015.01.015. Epub 2015 Feb 26.
5
The Arf and Rab11 effector FIP3 acts synergistically with ASAP1 to direct Rabin8 in ciliary receptor targeting.
J Cell Sci. 2015 Apr 1;128(7):1375-85. doi: 10.1242/jcs.162925. Epub 2015 Feb 11.
6
Ultrastructural visualization of trans-ciliary rhodopsin cargoes in mammalian rods.
Cilia. 2015 Feb 8;4:4. doi: 10.1186/s13630-015-0013-1. eCollection 2015.
7
Biology and therapy of inherited retinal degenerative disease: insights from mouse models.
Dis Model Mech. 2015 Feb;8(2):109-29. doi: 10.1242/dmm.017913.
8
Organization of cGMP sensing structures on the rod photoreceptor outer segment plasma membrane.
Channels (Austin). 2014;8(6):528-35. doi: 10.4161/19336950.2014.973776.
9
Nucleotide bound to rab11a controls localization in rod cells but not interaction with rhodopsin.
J Neurosci. 2014 Nov 5;34(45):14854-63. doi: 10.1523/JNEUROSCI.1943-14.2014.
10
Chemistry and biology of the initial steps in vision: the Friedenwald lecture.
Invest Ophthalmol Vis Sci. 2014 Oct 22;55(10):6651-72. doi: 10.1167/iovs.14-15502.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验