McLoon Anna L, Wuichet Kristin, Häsler Michael, Keilberg Daniela, Szadkowski Dobromir, Søgaard-Andersen Lotte
Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
J Bacteriol. 2015 Nov 16;198(3):510-20. doi: 10.1128/JB.00548-15. Print 2016 Feb 1.
In order to optimize interactions with their environment and one another, bacteria regulate their motility. In the case of the rod-shaped cells of Myxococcus xanthus, regulated motility is essential for social behaviors. M. xanthus moves over surfaces using type IV pilus-dependent motility and gliding motility. These two motility systems are coordinated by a protein module that controls cell polarity and consists of three polarly localized proteins, the small G protein MglA, the cognate MglA GTPase-activating protein MglB, and the response regulator RomR. Cellular reversals are induced by the Frz chemosensory system, and the output response regulator of this system, FrzZ, interfaces with the MglA/MglB/RomR module to invert cell polarity. Using a computational approach, we identify a paralog of MglB, MXAN_5770 (MglC). Genetic epistasis experiments demonstrate that MglC functions in the same pathway as MglA, MglB, RomR, and FrzZ and is important for regulating cellular reversals. Like MglB, MglC localizes to the cell poles asymmetrically and with a large cluster at the lagging pole. Correct polar localization of MglC depends on RomR and MglB. Consistently, MglC interacts directly with MglB and the C-terminal output domain of RomR, and we identified a surface of MglC that is necessary for the interaction with MglB and for MglC function. Together, our findings identify an additional member of the M. xanthus polarity module involved in regulating motility and demonstrate how gene duplication followed by functional divergence can add a layer of control to the complex cellular processes of motility and motility regulation.
Gene duplication and the subsequent divergence of the duplicated genes are important evolutionary mechanisms for increasing both biological complexity and regulation of biological processes. The bacterium Myxococcus xanthus is a soil bacterium with an unusually large genome that carries out several social processes, including predation of other bacterial species and formation of multicellular, spore-filled fruiting bodies. One feature of the large M. xanthus genome is that it contains many gene duplications. Here, we compare the products of one example of gene duplication and divergence, in which a paralog of the cognate MglA GTPase-activating protein MglB has acquired a different and opposing role in the regulation of cellular polarity and motility, processes critical to the bacterium's social behaviors.
为了优化与环境及彼此之间的相互作用,细菌会调节自身的运动性。对于黄色黏球菌的杆状细胞而言,受调控的运动性对于其社会行为至关重要。黄色黏球菌利用IV型菌毛依赖性运动和滑行运动在表面移动。这两种运动系统由一个控制细胞极性的蛋白质模块协调,该模块由三种极性定位的蛋白质组成,即小G蛋白MglA、同源的MglA GTP酶激活蛋白MglB以及应答调节因子RomR。细胞反转由Frz化学感应系统诱导,该系统的输出应答调节因子FrzZ与MglA/MglB/RomR模块相互作用以反转细胞极性。我们采用计算方法鉴定出MglB的一个旁系同源物MXAN_5770(MglC)。遗传上位性实验表明,MglC与MglA、MglB、RomR和FrzZ在同一途径中发挥作用,并且对于调节细胞反转很重要。与MglB一样,MglC不对称地定位于细胞两极,在滞后极有一个大的簇。MglC的正确极性定位取决于RomR和MglB。一致地,MglC直接与MglB以及RomR的C末端输出结构域相互作用,并且我们鉴定出MglC的一个表面,该表面对于与MglB的相互作用以及MglC的功能是必需的。总之,我们的发现鉴定出了黄色黏球菌极性模块中参与调节运动性的另一个成员,并证明了基因复制后随后的功能分化如何能够为运动性和运动性调节的复杂细胞过程增加一层控制。
基因复制以及复制后基因的分化是增加生物复杂性和生物过程调节的重要进化机制。黄色黏球菌是一种土壤细菌,具有异常大的基因组,它能进行多种社会过程,包括捕食其他细菌物种以及形成充满孢子的多细胞子实体。黄色黏球菌大基因组的一个特征是它包含许多基因复制。在这里,我们比较了一个基因复制和分化的例子的产物,其中同源MglA GTP酶激活蛋白MglB的一个旁系同源物在细胞极性和运动性调节中获得了不同且相反的作用,而细胞极性和运动性调节对于该细菌的社会行为至关重要。