Institut de Microbiologie de la Méditerranée-Université Aix-Marseille-Laboratoire de Chimie Bactérienne, Marseille, France.
PLoS Biol. 2010 Jul 20;8(7):e1000430. doi: 10.1371/journal.pbio.1000430.
Regulated cell polarity is central to many cellular processes. We investigated the mechanisms that govern the rapid switching of cell polarity (reversals) during motility of the bacterium Myxococcus xanthus. Cellular reversals are mediated by pole-to-pole oscillations of motility proteins and the frequency of the oscillations is under the control of the Frz chemosensory system. However, the molecular mechanism that creates dynamic polarity remained to be characterized. In this work, we establish that polarization is regulated by the GTP cycle of a Ras-like GTPase, MglA. We initially sought an MglA regulator and purified a protein, MglB, which was found to activate GTP hydrolysis by MglA. Using live fluorescence microscopy, we show that MglA and MglB localize at opposite poles and oscillate oppositely when cells reverse. In absence of MglB, MglA-YFP accumulates at the lagging cell end, leading to a strikingly aberrant reversal cycle. Spatial control of MglA is achieved through the GAP activity of MglB because an MglA mutant that cannot hydrolyze GTP accumulates at the lagging cell end, despite the presence of MglB. Genetic and cell biological studies show that the MglA-GTP cycle controls dynamic polarity and the reversal switch. The study supports a model wherein a chemosensory signal transduction system (Frz) activates reversals by relieving a spatial inhibition at the back pole of the cells: reversals are allowed by Frz-activated switching of MglB to the opposite pole, allowing MglA-GTP to accumulate at the back of the cells and create the polarity switch. In summary, our results provide insight into how bacteria regulate their polarity dynamically, revealing unsuspected conserved regulations with eukaryots.
细胞极性的调控对于许多细胞过程至关重要。我们研究了在粘细菌运动过程中控制细胞极性快速转换(反转)的机制。细胞反转由运动蛋白的极-极振荡介导,并且振荡的频率受 Frz 化学感受系统的控制。然而,产生动态极性的分子机制仍有待阐明。在这项工作中,我们确定极性受 Ras 样 GTP 酶 MglA 的 GTP 循环调控。我们最初寻找 MglA 调节剂,并纯化了一种蛋白质 MglB,发现它能激活 MglA 的 GTP 水解。使用活荧光显微镜,我们显示 MglA 和 MglB 定位于相反的极,并且当细胞反转时,它们呈相反的振荡。在没有 MglB 的情况下,MglA-YFP 在滞后细胞端积累,导致反转周期明显异常。MglA 的空间控制是通过 MglB 的 GAP 活性实现的,因为不能水解 GTP 的 MglA 突变体尽管存在 MglB 也会在滞后细胞端积累。遗传和细胞生物学研究表明,MglA-GTP 循环控制动态极性和反转开关。该研究支持这样一种模型:化学感受信号转导系统(Frz)通过解除细胞后极的空间抑制来激活反转:Frz 激活的 MglB 向相反极的切换允许反转,从而使 MglA-GTP 在细胞后端积累并产生极性开关。总之,我们的研究结果提供了关于细菌如何动态调节其极性的深入了解,揭示了与真核生物之间意想不到的保守调控。