Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University , Nishikyo-ku, Kyoto 615-8510, Japan.
PRESTO, Japan Science and Technology Agency (JST) , Kawaguchi-shi, Saitama 332-0012, Japan.
J Am Chem Soc. 2015 Dec 9;137(48):15315-21. doi: 10.1021/jacs.5b10255. Epub 2015 Nov 30.
In synthesizing mixed anion oxides, direct syntheses have often been employed, usually involving high temperature and occasionally high pressure. Compared with these methods, here we show how the use of a titanium perovskite oxyhydride (BaTiO2.5H0.5) as a starting material enables new multistep low temperature topochemical routes to access mixed anion compounds. Similar to labile ligands in inorganic complexes, the lability of H(-) provides the necessary reactivity for syntheses, leading to reactions and products previously difficult to obtain. For example, BaTiO2.5N0.2 can be prepared with the otherwise inert N2 gas at 400-600 °C, in marked contrast with currently available oxynitride synthetic routes. F(-)/H(-) exchange can also be accomplished at 150 °C, yielding the oxyhydride-fluoride BaTi(O, H, F)3. For BaTiO2.4D0.3F0.3, we find evidence that further anionic exchange with OD(-) yields BaTiO2.4(D(-))0.26(OD(-))0.34, which implies stable coexistence of H(+) and H(-) at ambient conditions. Such an arrangement is thermodynamically unstable and would be difficult to realize otherwise. These results show that the labile nature of hydride imparts reactivity to oxide hosts, enabling it to participate in new multistep reactions and form new materials.
在合成混合阴离子氧化物时,通常采用直接合成法,通常涉及高温,偶尔涉及高压。与这些方法相比,我们在这里展示了如何使用钛钙钛矿氢氧化物(BaTiO2.5H0.5)作为起始材料,实现新的多步低温拓扑化学途径来获得混合阴离子化合物。类似于无机配合物中不稳定的配体,H(-)的不稳定性为合成提供了必要的反应性,导致了以前难以获得的反应和产物。例如,可以在 400-600°C 下用惰性氮气 N2 制备 BaTiO2.5N0.2,这与目前可用的氮氧化物合成途径形成鲜明对比。在 150°C 时也可以进行 F(-)/H(-)交换,生成氢氧化物-氟化物 BaTi(O, H, F)3。对于 BaTiO2.4D0.3F0.3,我们发现证据表明,与 OD(-)的进一步阴离子交换生成 BaTiO2.4(D(-))0.26(OD(-))0.34,这意味着在环境条件下 H(+)和 H(-)的稳定共存。这种排列在热力学上是不稳定的,否则很难实现。这些结果表明,氢化物的不稳定性赋予了氧化物宿主反应性,使其能够参与新的多步反应并形成新材料。