Vuckovic Stefan, Wagner Lucas O, Mirtschink André, Gori-Giorgi Paola
Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, FEW, Vrije Universiteit , De Boelelaan 1083, 1081HV Amsterdam, The Netherlands.
J Chem Theory Comput. 2015 Jul 14;11(7):3153-62. doi: 10.1021/acs.jctc.5b00387.
Using the dual Kantorovich formulation, we compute the strictly correlated electrons (SCE) functional (corresponding to the exact strong-interaction limit of density functional theory) for the hydrogen molecule along the dissociation curve. We use an exact relation between the Kantorovich potential and the optimal map to compute the comotion function, exploring corrections based on it. In particular, we analyze how the SCE functional transforms in an exact way the electron-electron distance into a one-body quantity, a feature that can be exploited to build new approximate functionals. We also show that the dual Kantorovich formulation provides in a natural way the constant in the Kohn-Sham potential recently introduced by Levy and Zahariev [Phys. Rev. Lett. 2014, 113, 113002] for finite systems.
利用对偶康托罗维奇公式,我们沿着解离曲线计算了氢分子的严格关联电子(SCE)泛函(对应于密度泛函理论的精确强相互作用极限)。我们利用康托罗维奇势与最优映射之间的精确关系来计算共动函数,并在此基础上探索修正。特别地,我们分析了SCE泛函如何以精确的方式将电子 - 电子距离转化为一个单体量,这一特性可用于构建新的近似泛函。我们还表明,对偶康托罗维奇公式以自然的方式给出了最近由利维(Levy)和扎哈里耶夫(Zahariev)[《物理评论快报》2014年,第113卷,113002]为有限体系引入的科恩 - 沙姆势中的常数。