Suppr超能文献

现存食肉目动物骨迷路形状变异:鼬形亚目案例研究

Bony labyrinth shape variation in extant Carnivora: a case study of Musteloidea.

作者信息

Grohé Camille, Tseng Z Jack, Lebrun Renaud, Boistel Renaud, Flynn John J

机构信息

Division of Paleontology, American Museum of Natural History, New York, NY, USA.

Institut des Sciences de l'Évolution de Montpellier (ISE-M UMR-CNRS 5554) - Université Montpellier II, Montpellier, France.

出版信息

J Anat. 2016 Mar;228(3):366-83. doi: 10.1111/joa.12421. Epub 2015 Nov 18.

Abstract

The bony labyrinth provides a proxy for the morphology of the inner ear, a primary cognitive organ involved in hearing, body perception in space, and balance in vertebrates. Bony labyrinth shape variations often are attributed to phylogenetic and ecological factors. Here we use three-dimensional (3D) geometric morphometrics to examine the phylogenetic and ecological patterns of variation in the bony labyrinth morphology of the most species-rich and ecologically diversified traditionally recognized superfamily of Carnivora, the Musteloidea (e.g. weasels, otters, badgers, red panda, skunks, raccoons, coatis). We scanned the basicrania of specimens belonging to 31 species using high-resolution X-ray computed micro-tomography (μCT) to virtually reconstruct 3D models of the bony labyrinths. Labyrinth morphology is captured by a set of six fixed landmarks on the vestibular and cochlear systems, and 120 sliding semilandmarks, slid at the center of the semicircular canals and the cochlea. We found that the morphology of this sensory structure is not significantly influenced by bony labyrinth size, in comparisons across all musteloids or in any of the individual traditionally recognized families (Mephitidae, Procyonidae, Mustelidae). PCA (principal components analysis) of shape data revealed that bony labyrinth morphology is clearly distinguishable between musteloid families, and permutation tests of the Kmult statistic confirmed that the bony labyrinth shows a phylogenetic signal in musteloids and in most mustelids. Both the vestibular and cochlear regions display morphological differences among the musteloids sampled, associated with the size and curvature of the semicircular canals, angles between canals, presence or absence of a secondary common crus, degree of lateral compression of the vestibule, orientation of the cochlea relative to the semicircular canals, proportions of the cochlea, and degree of curvature of its turns. We detected a significant ecological signal in the bony labyrinth shape of musteloids, differentiating semi-aquatic taxa from non-aquatic ones (the taxa assigned to terrestrial, arboreal, semi-arboreal, and semi-fossorial categories), and a significant signal for mustelids, differentiating the bony labyrinths of terrestrial, semi-arboreal, arboreal, semi-fossorial and semi-aquatic species from each other. Otters and minks are distinguished from non-aquatic musteloids by an oval rather than circular anterior canal, sinuous rather than straight lateral canal, and acute rather than straight angle between the posterior and lateral semicircular canals - each of these morphological characters has been related previously to animal sensitivity for detecting head motion in space.

摘要

骨迷路为内耳形态提供了一个替代指标,内耳是脊椎动物主要的认知器官,参与听觉、空间身体感知和平衡。骨迷路形状的变化通常归因于系统发育和生态因素。在这里,我们使用三维(3D)几何形态测量学来研究食肉目传统上认可的物种最丰富、生态最多样化的超科——鼬超科(如黄鼠狼、水獭、獾、小熊猫、臭鼬、浣熊、南美浣熊)骨迷路形态的系统发育和生态变异模式。我们使用高分辨率X射线计算机断层扫描(μCT)扫描了属于31个物种的标本的颅底,以虚拟重建骨迷路的3D模型。迷路形态通过前庭和耳蜗系统上的一组六个固定地标以及120个滑动半地标来捕捉,这些半地标在半规管和耳蜗的中心滑动。我们发现,在所有鼬超科动物之间或任何一个传统认可的科(臭鼬科、浣熊科、鼬科)中进行比较时,这种感觉结构的形态不受骨迷路大小的显著影响。形状数据的主成分分析(PCA)表明,骨迷路形态在鼬超科各家族之间明显可区分,并且Kmult统计量的置换检验证实,骨迷路在鼬超科动物和大多数鼬科动物中显示出系统发育信号。在前庭和耳蜗区域中,所采样的鼬超科动物之间均表现出形态差异,这些差异与半规管的大小和曲率、半规管之间的角度、是否存在次生总脚、前庭的侧向压缩程度、耳蜗相对于半规管的方向、耳蜗的比例及其转弯的曲率程度有关。我们在鼬超科动物的骨迷路形状中检测到显著的生态信号,将半水生类群与非水生类群(归类为陆生、树栖、半树栖和半穴居类别的类群)区分开来,并且在鼬科动物中检测到显著信号,将陆生、半树栖、树栖、半穴居和半水生物种的骨迷路相互区分开来。水獭和水貂与非水生鼬超科动物的区别在于,前者的前半规管呈椭圆形而非圆形,外侧半规管蜿蜒而非笔直,后半规管和外侧半规管之间的角度为锐角而非直角——这些形态特征此前均与动物在空间中检测头部运动的敏感性有关。

相似文献

1
Bony labyrinth shape variation in extant Carnivora: a case study of Musteloidea.
J Anat. 2016 Mar;228(3):366-83. doi: 10.1111/joa.12421. Epub 2015 Nov 18.
2
Deciphering and dating the red panda's ancestry and early adaptive radiation of Musteloidea.
Mol Phylogenet Evol. 2009 Dec;53(3):907-22. doi: 10.1016/j.ympev.2009.08.019. Epub 2009 Aug 21.
3
Shape variation and ontogeny of the ruminant bony labyrinth, an example in Tragulidae.
J Anat. 2016 Sep;229(3):422-35. doi: 10.1111/joa.12487. Epub 2016 Jun 1.
4
Comparative analysis of vestibular ecomorphology in birds.
J Anat. 2017 Dec;231(6):990-1018. doi: 10.1111/joa.12726.
5
Functional morphological adaptations of the bony labyrinth in marsupials (Mammalia, Theria).
J Morphol. 2017 Jun;278(6):742-749. doi: 10.1002/jmor.20669. Epub 2017 Mar 27.
6
Carnivoran hunting style and phylogeny reflected in bony labyrinth morphometry.
Sci Rep. 2019 Jan 11;9(1):70. doi: 10.1038/s41598-018-37106-4.
9
Comparative Anatomy of the Bony Labyrinth (Inner Ear) of Placental Mammals.
PLoS One. 2013 Jun 21;8(6):e66624. doi: 10.1371/journal.pone.0066624. Print 2013.
10
The mammalian bony labyrinth reconsidered, introducing a comprehensive geometric morphometric approach.
J Anat. 2012 Jun;220(6):529-43. doi: 10.1111/j.1469-7580.2012.01493.x. Epub 2012 Mar 8.

引用本文的文献

1
Variation and disparity within the inner ear and trigeminus of the tenrecomorpha.
Commun Biol. 2025 Jul 23;8(1):1090. doi: 10.1038/s42003-025-08489-8.
2
Emergent network properties link phenotypic modules to ecomorphological divergence in carnivoran mammals.
iScience. 2025 Jan 16;28(2):111828. doi: 10.1016/j.isci.2025.111828. eCollection 2025 Feb 21.
3
Evolutionary analysis of genes associated with the sense of balance in semi-aquatic mammals.
BMC Ecol Evol. 2025 Jan 10;25(1):8. doi: 10.1186/s12862-024-02345-9.
4
Size, not phylogeny, explains the morphology of the endosseous labyrinth in the crown clade Crocodylia.
J Anat. 2025 Apr;246(4):558-574. doi: 10.1111/joa.14170. Epub 2024 Dec 20.
7
Evolutionary ecomorphology for the twenty-first century: examples from mammalian carnivores.
Proc Biol Sci. 2023 Nov 29;290(2011):20231400. doi: 10.1098/rspb.2023.1400.
8
Locomotor behavior and hearing sensitivity in an early lagomorph reconstructed from the bony labyrinth.
Ecol Evol. 2023 Mar 18;13(3):e9890. doi: 10.1002/ece3.9890. eCollection 2023 Mar.
9
Morphology of the Bony Labyrinth Supports the Affinities of with the Papionina.
Int J Primatol. 2023;44(1):209-236. doi: 10.1007/s10764-022-00329-4. Epub 2022 Sep 20.
10
Ruminant inner ear shape records 35 million years of neutral evolution.
Nat Commun. 2022 Dec 6;13(1):7222. doi: 10.1038/s41467-022-34656-0.

本文引用的文献

2
Form and function of the mammalian inner ear.
J Anat. 2016 Feb;228(2):324-37. doi: 10.1111/joa.12308. Epub 2015 Apr 25.
4
Evolution of wing shape in hornets: why is the wing venation efficient for species identification?
J Evol Biol. 2014 Dec;27(12):2665-75. doi: 10.1111/jeb.12523. Epub 2014 Oct 27.
5
A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data.
Syst Biol. 2014 Sep;63(5):685-97. doi: 10.1093/sysbio/syu030. Epub 2014 Apr 30.
6
Assessing trait covariation and morphological integration on phylogenies using evolutionary covariance matrices.
PLoS One. 2014 Apr 11;9(4):e94335. doi: 10.1371/journal.pone.0094335. eCollection 2014.
7
Taxonomic revision of the olingos (Bassaricyon), with description of a new species, the Olinguito.
Zookeys. 2013 Aug 15(324):1-83. doi: 10.3897/zookeys.324.5827. eCollection 2013.
8
Comparative Anatomy of the Bony Labyrinth (Inner Ear) of Placental Mammals.
PLoS One. 2013 Jun 21;8(6):e66624. doi: 10.1371/journal.pone.0066624. Print 2013.
9
Locomotor head movements and semicircular canal morphology in primates.
Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):17914-9. doi: 10.1073/pnas.1206139109. Epub 2012 Oct 8.
10
Evolution of locomotion in Anthropoidea: the semicircular canal evidence.
Proc Biol Sci. 2012 Sep 7;279(1742):3467-75. doi: 10.1098/rspb.2012.0939. Epub 2012 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验